改进的Elman神经网络预测模型及其在农业生产中的应用

Liu Yi, Xu Ke, Song Junde, Zhao Yuwen, Bi Qiang
{"title":"改进的Elman神经网络预测模型及其在农业生产中的应用","authors":"Liu Yi, Xu Ke, Song Junde, Zhao Yuwen, Bi Qiang","doi":"10.1109/GRC.2013.6740408","DOIUrl":null,"url":null,"abstract":"On the base of analyzing the dynamic characteristics of Elman neural network, this paper proposes to use an improved Elman neural network to forecast in the agricultural production areas against to the BP neural network's static defects. We uses the data of rice pest-Chilo to simulate. The experiment shows that the improved Elman neural network has better predictability and stability than Elman neural network and BP neural network.","PeriodicalId":415445,"journal":{"name":"2013 IEEE International Conference on Granular Computing (GrC)","volume":"449 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forecasting model based on an improved Elman neural network and its application in the agricultural production\",\"authors\":\"Liu Yi, Xu Ke, Song Junde, Zhao Yuwen, Bi Qiang\",\"doi\":\"10.1109/GRC.2013.6740408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the base of analyzing the dynamic characteristics of Elman neural network, this paper proposes to use an improved Elman neural network to forecast in the agricultural production areas against to the BP neural network's static defects. We uses the data of rice pest-Chilo to simulate. The experiment shows that the improved Elman neural network has better predictability and stability than Elman neural network and BP neural network.\",\"PeriodicalId\":415445,\"journal\":{\"name\":\"2013 IEEE International Conference on Granular Computing (GrC)\",\"volume\":\"449 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Granular Computing (GrC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRC.2013.6740408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Granular Computing (GrC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2013.6740408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在分析Elman神经网络动态特性的基础上,针对BP神经网络静态预测的缺陷,提出了一种改进的Elman神经网络用于农业生产区域预测的方法。我们使用水稻害虫- chilo的数据进行模拟。实验表明,改进的Elman神经网络比Elman神经网络和BP神经网络具有更好的可预测性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting model based on an improved Elman neural network and its application in the agricultural production
On the base of analyzing the dynamic characteristics of Elman neural network, this paper proposes to use an improved Elman neural network to forecast in the agricultural production areas against to the BP neural network's static defects. We uses the data of rice pest-Chilo to simulate. The experiment shows that the improved Elman neural network has better predictability and stability than Elman neural network and BP neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信