基于卷积递归神经网络和评分水平融合的环境声分类亚谱图分割

Tianhao Qiao, Shunqing Zhang, Zhichao Zhang, Shan Cao, Shugong Xu
{"title":"基于卷积递归神经网络和评分水平融合的环境声分类亚谱图分割","authors":"Tianhao Qiao, Shunqing Zhang, Zhichao Zhang, Shan Cao, Shugong Xu","doi":"10.1109/SiPS47522.2019.9020418","DOIUrl":null,"url":null,"abstract":"Environmental Sound Classification (ESC) is an important and challenging problem, and feature representation is a critical and even decisive factor in ESC. Feature representation ability directly affects the accuracy of sound classification. Therefore, the ESC performance is heavily dependent on the effectiveness of representative features extracted from the environmental sounds. In this paper, we propose a sub-spectrogram segmentation based ESC classification framework. In addition, we adopt the proposed Convolutional Recurrent Neural Network (CRNN) and score level fusion to jointly improve the classification accuracy. Extensive truncation schemes are evaluated to find the optimal number and the corresponding band ranges of sub-spectrograms. Based on the numerical experiments, the proposed framework can achieve 81.9% ESC classification accuracy on the public dataset ESC-50, which provides 9.1% accuracy improvement over traditional baseline schemes.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Sub-spectrogram Segmentation for Environmental Sound Classification via Convolutional Recurrent Neural Network and Score Level Fusion\",\"authors\":\"Tianhao Qiao, Shunqing Zhang, Zhichao Zhang, Shan Cao, Shugong Xu\",\"doi\":\"10.1109/SiPS47522.2019.9020418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental Sound Classification (ESC) is an important and challenging problem, and feature representation is a critical and even decisive factor in ESC. Feature representation ability directly affects the accuracy of sound classification. Therefore, the ESC performance is heavily dependent on the effectiveness of representative features extracted from the environmental sounds. In this paper, we propose a sub-spectrogram segmentation based ESC classification framework. In addition, we adopt the proposed Convolutional Recurrent Neural Network (CRNN) and score level fusion to jointly improve the classification accuracy. Extensive truncation schemes are evaluated to find the optimal number and the corresponding band ranges of sub-spectrograms. Based on the numerical experiments, the proposed framework can achieve 81.9% ESC classification accuracy on the public dataset ESC-50, which provides 9.1% accuracy improvement over traditional baseline schemes.\",\"PeriodicalId\":256971,\"journal\":{\"name\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS47522.2019.9020418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

环境声分类是环境声分类的一个重要而富有挑战性的问题,而特征表示是环境声分类的关键甚至决定性因素。特征表征能力直接影响语音分类的准确性。因此,ESC的性能在很大程度上取决于从环境声音中提取的代表性特征的有效性。本文提出了一种基于子谱图分割的ESC分类框架。此外,我们采用了提出的卷积递归神经网络(CRNN)和评分水平融合来共同提高分类精度。评估了广泛的截断方案,以找到子谱图的最优数量和相应的频带范围。数值实验表明,该框架在公共数据集ESC-50上的ESC分类准确率达到81.9%,比传统基准方案的准确率提高了9.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sub-spectrogram Segmentation for Environmental Sound Classification via Convolutional Recurrent Neural Network and Score Level Fusion
Environmental Sound Classification (ESC) is an important and challenging problem, and feature representation is a critical and even decisive factor in ESC. Feature representation ability directly affects the accuracy of sound classification. Therefore, the ESC performance is heavily dependent on the effectiveness of representative features extracted from the environmental sounds. In this paper, we propose a sub-spectrogram segmentation based ESC classification framework. In addition, we adopt the proposed Convolutional Recurrent Neural Network (CRNN) and score level fusion to jointly improve the classification accuracy. Extensive truncation schemes are evaluated to find the optimal number and the corresponding band ranges of sub-spectrograms. Based on the numerical experiments, the proposed framework can achieve 81.9% ESC classification accuracy on the public dataset ESC-50, which provides 9.1% accuracy improvement over traditional baseline schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信