认知无线电的迭代联合信道和噪声方差估计及主用户信号检测

Ayman Assra, Arash Vakili, B. Champagne
{"title":"认知无线电的迭代联合信道和噪声方差估计及主用户信号检测","authors":"Ayman Assra, Arash Vakili, B. Champagne","doi":"10.1109/ISSPIT.2011.6151578","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a joint channel and noise variance estimation, and primary user (PU) signal detection scheme using the expectation-maximization (EM) algorithm for cognitive radios. In our investigation, we consider two scenarios: In the first scenario, the channel and noise variance are assumed to be perfectly known by the secondary user (SU). Here, we propose a maximum-likelihood (ML) solution of the PU signal detection as an upper bound on the performance of the proposed joint estimation and detection (JED) scheme. We also provide an iterative implementation of the ML-based detector using the EM algorithm. In the second case, we extend our work to the problem of channel and noise variance estimation in cognitive radios, where we propose an iterative JED scheme based on the EM algorithm. The simulation results show that the proposed JED scheme can iteratively attain a reliable performance with few iterations and modest computational complexity.","PeriodicalId":288042,"journal":{"name":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Iterative joint channel and noise variance estimation and primary user signal detection for cognitive radios\",\"authors\":\"Ayman Assra, Arash Vakili, B. Champagne\",\"doi\":\"10.1109/ISSPIT.2011.6151578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a joint channel and noise variance estimation, and primary user (PU) signal detection scheme using the expectation-maximization (EM) algorithm for cognitive radios. In our investigation, we consider two scenarios: In the first scenario, the channel and noise variance are assumed to be perfectly known by the secondary user (SU). Here, we propose a maximum-likelihood (ML) solution of the PU signal detection as an upper bound on the performance of the proposed joint estimation and detection (JED) scheme. We also provide an iterative implementation of the ML-based detector using the EM algorithm. In the second case, we extend our work to the problem of channel and noise variance estimation in cognitive radios, where we propose an iterative JED scheme based on the EM algorithm. The simulation results show that the proposed JED scheme can iteratively attain a reliable performance with few iterations and modest computational complexity.\",\"PeriodicalId\":288042,\"journal\":{\"name\":\"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2011.6151578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2011.6151578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种联合信道和噪声方差估计以及基于期望最大化算法的认知无线电主用户信号检测方案。在我们的调查中,我们考虑了两种情况:在第一种情况下,假设二级用户(SU)完全知道信道和噪声方差。在这里,我们提出了PU信号检测的最大似然(ML)解作为所提出的联合估计和检测(JED)方案性能的上界。我们还提供了使用EM算法的基于ml的检测器的迭代实现。在第二种情况下,我们将我们的工作扩展到认知无线电中的信道和噪声方差估计问题,在那里我们提出了基于EM算法的迭代JED方案。仿真结果表明,所提出的JED方案迭代性能可靠,迭代次数少,计算复杂度适中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative joint channel and noise variance estimation and primary user signal detection for cognitive radios
In this paper, we introduce a joint channel and noise variance estimation, and primary user (PU) signal detection scheme using the expectation-maximization (EM) algorithm for cognitive radios. In our investigation, we consider two scenarios: In the first scenario, the channel and noise variance are assumed to be perfectly known by the secondary user (SU). Here, we propose a maximum-likelihood (ML) solution of the PU signal detection as an upper bound on the performance of the proposed joint estimation and detection (JED) scheme. We also provide an iterative implementation of the ML-based detector using the EM algorithm. In the second case, we extend our work to the problem of channel and noise variance estimation in cognitive radios, where we propose an iterative JED scheme based on the EM algorithm. The simulation results show that the proposed JED scheme can iteratively attain a reliable performance with few iterations and modest computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信