基于原始路径延迟故障识别的时序分析

M. Sivaraman, A. Strojwas
{"title":"基于原始路径延迟故障识别的时序分析","authors":"M. Sivaraman, A. Strojwas","doi":"10.1109/ICCAD.1997.643405","DOIUrl":null,"url":null,"abstract":"We present a novel timing analysis mechanism which is based on identifying primitive path delay faults (primitive PDFs) in a circuit. We show that this approach gives the exact maximum delay of the circuit under the floating mode of operation assumption. Our timing analysis approach provides a framework where component delay correlations and signal correlations arising from fabrication process, signal propagation, and signal interaction effects can be handled very accurately. Under these effects, timing analysis using previously reported floating mode timing analyzers, e.g., viability, TrueD-F etc., is very pessimistic. Our timing analysis approach based on primitive PDF identification is also more efficient than conventional floating mode path sensitization analysis mechanisms in situations where critical paths need to be re-identified due to component delay speedup (e.g., postlayout delay optimization). We demonstrate the applicability of our timing analysis approach for a variety of benchmark circuits, and demonstrate the pessimism of conventional floating mode timing analysis approaches in accounting for signal propagation effects.","PeriodicalId":187521,"journal":{"name":"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Timing analysis based on primitive path delay fault identification\",\"authors\":\"M. Sivaraman, A. Strojwas\",\"doi\":\"10.1109/ICCAD.1997.643405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel timing analysis mechanism which is based on identifying primitive path delay faults (primitive PDFs) in a circuit. We show that this approach gives the exact maximum delay of the circuit under the floating mode of operation assumption. Our timing analysis approach provides a framework where component delay correlations and signal correlations arising from fabrication process, signal propagation, and signal interaction effects can be handled very accurately. Under these effects, timing analysis using previously reported floating mode timing analyzers, e.g., viability, TrueD-F etc., is very pessimistic. Our timing analysis approach based on primitive PDF identification is also more efficient than conventional floating mode path sensitization analysis mechanisms in situations where critical paths need to be re-identified due to component delay speedup (e.g., postlayout delay optimization). We demonstrate the applicability of our timing analysis approach for a variety of benchmark circuits, and demonstrate the pessimism of conventional floating mode timing analysis approaches in accounting for signal propagation effects.\",\"PeriodicalId\":187521,\"journal\":{\"name\":\"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1997.643405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1997.643405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于识别电路中原始路径延迟故障(原始pdf)的时序分析机制。结果表明,在浮动模式下,该方法能准确地给出电路的最大延时。我们的时序分析方法提供了一个框架,可以非常准确地处理由制造过程、信号传播和信号相互作用效应引起的分量延迟相关性和信号相关性。在这些影响下,使用先前报道的浮动模式时序分析仪(如可行性、TrueD-F等)进行时序分析非常悲观。在由于元件延迟加速而需要重新识别关键路径的情况下(例如,布局后延迟优化),我们基于原始PDF识别的时序分析方法也比传统的浮动模式路径敏化分析机制更有效。我们证明了我们的时序分析方法对各种基准电路的适用性,并证明了传统的浮动模式时序分析方法在考虑信号传播效应方面的悲观情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Timing analysis based on primitive path delay fault identification
We present a novel timing analysis mechanism which is based on identifying primitive path delay faults (primitive PDFs) in a circuit. We show that this approach gives the exact maximum delay of the circuit under the floating mode of operation assumption. Our timing analysis approach provides a framework where component delay correlations and signal correlations arising from fabrication process, signal propagation, and signal interaction effects can be handled very accurately. Under these effects, timing analysis using previously reported floating mode timing analyzers, e.g., viability, TrueD-F etc., is very pessimistic. Our timing analysis approach based on primitive PDF identification is also more efficient than conventional floating mode path sensitization analysis mechanisms in situations where critical paths need to be re-identified due to component delay speedup (e.g., postlayout delay optimization). We demonstrate the applicability of our timing analysis approach for a variety of benchmark circuits, and demonstrate the pessimism of conventional floating mode timing analysis approaches in accounting for signal propagation effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信