探索贝叶斯概率矩阵分解的并行实现

Imen Chakroun, Tom Haber, T. Aa, Thomas Kovac
{"title":"探索贝叶斯概率矩阵分解的并行实现","authors":"Imen Chakroun, Tom Haber, T. Aa, Thomas Kovac","doi":"10.1109/PDP.2016.48","DOIUrl":null,"url":null,"abstract":"Using the matrix factorization technique in machine learning is very common mainly in areas like recommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used because of the prohibitive cost. In this paper, we propose a comprehensive parallel implementation of the BPMF using Gibbs sampling on shared and distributed architectures. We also propose an insight of a GPU-based implementation of this algorithm.","PeriodicalId":192273,"journal":{"name":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploring Parallel Implementations of the Bayesian Probabilistic Matrix Factorization\",\"authors\":\"Imen Chakroun, Tom Haber, T. Aa, Thomas Kovac\",\"doi\":\"10.1109/PDP.2016.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the matrix factorization technique in machine learning is very common mainly in areas like recommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used because of the prohibitive cost. In this paper, we propose a comprehensive parallel implementation of the BPMF using Gibbs sampling on shared and distributed architectures. We also propose an insight of a GPU-based implementation of this algorithm.\",\"PeriodicalId\":192273,\"journal\":{\"name\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2016.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2016.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在机器学习中使用矩阵分解技术是非常常见的,主要是在推荐系统等领域。尽管贝叶斯概率矩阵分解算法(BPMF)具有较高的预测精度和避免数据过拟合的能力,但由于成本过高而没有得到广泛应用。在本文中,我们提出了一种在共享和分布式架构上使用Gibbs采样的BPMF的全面并行实现。我们还提出了一种基于gpu的算法实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Parallel Implementations of the Bayesian Probabilistic Matrix Factorization
Using the matrix factorization technique in machine learning is very common mainly in areas like recommender systems. Despite its high prediction accuracy and its ability to avoid over-fitting of the data, the Bayesian Probabilistic Matrix Factorization algorithm (BPMF) has not been widely used because of the prohibitive cost. In this paper, we propose a comprehensive parallel implementation of the BPMF using Gibbs sampling on shared and distributed architectures. We also propose an insight of a GPU-based implementation of this algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信