随机Kaczmarz算法:精确的MSE分析和最佳抽样概率

Ameya Agaskar, C. Wang, Yue M. Lu
{"title":"随机Kaczmarz算法:精确的MSE分析和最佳抽样概率","authors":"Ameya Agaskar, C. Wang, Yue M. Lu","doi":"10.1109/GlobalSIP.2014.7032145","DOIUrl":null,"url":null,"abstract":"The Kaczmarz method, or the algebraic reconstruction technique (ART), is a popular method for solving large-scale overdetermined systems of equations. Recently, Strohmer et al. proposed the randomized Kaczmarz algorithm, an improvement that guarantees exponential convergence to the solution. This has spurred much interest in the algorithm and its extensions. We provide in this paper an exact formula for the mean squared error (MSE) in the value reconstructed by the algorithm. We also compute the exponential decay rate of the MSE, which we call the \"annealed\" error exponent. We show that the typical performance of the algorithm is far better than the average performance. We define the \"quenched\" error exponent to characterize the typical performance. This is far harder to compute than the annealed error exponent, but we provide an approximation that matches empirical results. We also explore optimizing the algorithm's row-selection probabilities to speed up the algorithm's convergence.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Randomized Kaczmarz algorithms: Exact MSE analysis and optimal sampling probabilities\",\"authors\":\"Ameya Agaskar, C. Wang, Yue M. Lu\",\"doi\":\"10.1109/GlobalSIP.2014.7032145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kaczmarz method, or the algebraic reconstruction technique (ART), is a popular method for solving large-scale overdetermined systems of equations. Recently, Strohmer et al. proposed the randomized Kaczmarz algorithm, an improvement that guarantees exponential convergence to the solution. This has spurred much interest in the algorithm and its extensions. We provide in this paper an exact formula for the mean squared error (MSE) in the value reconstructed by the algorithm. We also compute the exponential decay rate of the MSE, which we call the \\\"annealed\\\" error exponent. We show that the typical performance of the algorithm is far better than the average performance. We define the \\\"quenched\\\" error exponent to characterize the typical performance. This is far harder to compute than the annealed error exponent, but we provide an approximation that matches empirical results. We also explore optimizing the algorithm's row-selection probabilities to speed up the algorithm's convergence.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

Kaczmarz方法,或称代数重构技术(ART),是求解大规模过定方程组的常用方法。最近,Strohmer等人提出了随机化的Kaczmarz算法,这种改进保证了解的指数收敛性。这激发了人们对该算法及其扩展的极大兴趣。本文给出了用该算法重构的值的均方误差(MSE)的精确公式。我们还计算了MSE的指数衰减率,我们称之为“退火”误差指数。结果表明,该算法的典型性能远远优于平均性能。我们定义了“淬火”误差指数来表征典型的性能。这比退火误差指数更难计算,但我们提供了一个与经验结果相匹配的近似值。我们还探索了优化算法的行选择概率以加快算法的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized Kaczmarz algorithms: Exact MSE analysis and optimal sampling probabilities
The Kaczmarz method, or the algebraic reconstruction technique (ART), is a popular method for solving large-scale overdetermined systems of equations. Recently, Strohmer et al. proposed the randomized Kaczmarz algorithm, an improvement that guarantees exponential convergence to the solution. This has spurred much interest in the algorithm and its extensions. We provide in this paper an exact formula for the mean squared error (MSE) in the value reconstructed by the algorithm. We also compute the exponential decay rate of the MSE, which we call the "annealed" error exponent. We show that the typical performance of the algorithm is far better than the average performance. We define the "quenched" error exponent to characterize the typical performance. This is far harder to compute than the annealed error exponent, but we provide an approximation that matches empirical results. We also explore optimizing the algorithm's row-selection probabilities to speed up the algorithm's convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信