Alexander Krolicki, Dakota Rufino, D. Tellez-Castro
{"title":"基于库普曼特征函数的有限时间非线性最优控制","authors":"Alexander Krolicki, Dakota Rufino, D. Tellez-Castro","doi":"10.23919/ACC55779.2023.10156481","DOIUrl":null,"url":null,"abstract":"We propose a computational method for the finite-time nonlinear optimal control problem. We compute the solutions by first performing a coordinate transformation using the principle Koopman eigenfunctions. Then, we synthesize past and present techniques for obtaining a general explicit solution to the resulting differential Riccati equation. We demonstrate our method on a numerical example, for which the analytic Koopman eigenfunctions are known.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Time Nonlinear Optimal Control using Koopman Eigenfunctions\",\"authors\":\"Alexander Krolicki, Dakota Rufino, D. Tellez-Castro\",\"doi\":\"10.23919/ACC55779.2023.10156481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a computational method for the finite-time nonlinear optimal control problem. We compute the solutions by first performing a coordinate transformation using the principle Koopman eigenfunctions. Then, we synthesize past and present techniques for obtaining a general explicit solution to the resulting differential Riccati equation. We demonstrate our method on a numerical example, for which the analytic Koopman eigenfunctions are known.\",\"PeriodicalId\":397401,\"journal\":{\"name\":\"2023 American Control Conference (ACC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC55779.2023.10156481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10156481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite Time Nonlinear Optimal Control using Koopman Eigenfunctions
We propose a computational method for the finite-time nonlinear optimal control problem. We compute the solutions by first performing a coordinate transformation using the principle Koopman eigenfunctions. Then, we synthesize past and present techniques for obtaining a general explicit solution to the resulting differential Riccati equation. We demonstrate our method on a numerical example, for which the analytic Koopman eigenfunctions are known.