药物设计的对抗性深度进化学习

Sheriff Abouchekeir, A. Tchagang, Yifeng Li
{"title":"药物设计的对抗性深度进化学习","authors":"Sheriff Abouchekeir, A. Tchagang, Yifeng Li","doi":"10.1109/CIBCB49929.2021.9562949","DOIUrl":null,"url":null,"abstract":"The design of a new therapeutic agent is a time-consuming and expensive process. The rise of machine intelligence provides a grand opportunity of expeditiously discovering novel drug candidates through smart search in the vast molecular structural space. In this paper, we propose a new approach called adversarial deep evolutionary learning (ADEL) to search for novel molecules in the latent space of an adversarial generative model and keep improving the latent representation space. In ADEL, a custom-made adversarial autoencoder (AAE) model is developed and trained under a deep evolutionary learning (DEL) process. This involves an initial training of the AAE model, followed by an integration of multi-objective evolutionary optimization in the continuous latent representation space of the AAE rather than the discrete structural space of molecules. By using the AAE, an arbitrary distribution can be provided to the training of AAE such that the latent representation space is set to that distribution. This allows for a starting latent space from which new samples can be produced. Throughout the process of learning, new samples of high-quality are generated after each iteration of training and then added back into the full dataset. Therefore, allowing for a more comprehensive procedure of understanding the data structure. This combination of evolving data and continuous learning not only enables improvement in the generative model, but the data as well. By comparing ADEL to the previous work in DEL, we see that ADEL can obtain better property distributions.","PeriodicalId":163387,"journal":{"name":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adversarial Deep Evolutionary Learning for Drug Design\",\"authors\":\"Sheriff Abouchekeir, A. Tchagang, Yifeng Li\",\"doi\":\"10.1109/CIBCB49929.2021.9562949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of a new therapeutic agent is a time-consuming and expensive process. The rise of machine intelligence provides a grand opportunity of expeditiously discovering novel drug candidates through smart search in the vast molecular structural space. In this paper, we propose a new approach called adversarial deep evolutionary learning (ADEL) to search for novel molecules in the latent space of an adversarial generative model and keep improving the latent representation space. In ADEL, a custom-made adversarial autoencoder (AAE) model is developed and trained under a deep evolutionary learning (DEL) process. This involves an initial training of the AAE model, followed by an integration of multi-objective evolutionary optimization in the continuous latent representation space of the AAE rather than the discrete structural space of molecules. By using the AAE, an arbitrary distribution can be provided to the training of AAE such that the latent representation space is set to that distribution. This allows for a starting latent space from which new samples can be produced. Throughout the process of learning, new samples of high-quality are generated after each iteration of training and then added back into the full dataset. Therefore, allowing for a more comprehensive procedure of understanding the data structure. This combination of evolving data and continuous learning not only enables improvement in the generative model, but the data as well. By comparing ADEL to the previous work in DEL, we see that ADEL can obtain better property distributions.\",\"PeriodicalId\":163387,\"journal\":{\"name\":\"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB49929.2021.9562949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB49929.2021.9562949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一种新的治疗剂的设计是一个耗时且昂贵的过程。机器智能的兴起为在广阔的分子结构空间中通过智能搜索快速发现新的候选药物提供了巨大的机会。在本文中,我们提出了一种新的方法,称为对抗深度进化学习(ADEL),在对抗生成模型的潜在空间中寻找新的分子,并不断改进潜在表示空间。在深度进化学习(DEL)过程中,开发了定制的对抗自编码器(AAE)模型并对其进行了训练。这包括对AAE模型进行初始训练,然后在AAE的连续潜在表示空间(而不是分子的离散结构空间)中集成多目标进化优化。通过使用AAE,可以为AAE的训练提供一个任意分布,从而将潜在表示空间设置为该分布。这允许一个开始的潜在空间,从中可以产生新的样本。在整个学习过程中,每次训练迭代后都会生成新的高质量样本,然后再添加回完整数据集。因此,允许更全面的过程来理解数据结构。不断发展的数据和持续学习的结合不仅可以改进生成模型,也可以改进数据。通过将ADEL与之前在DEL中的工作进行比较,我们可以看到ADEL可以获得更好的属性分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial Deep Evolutionary Learning for Drug Design
The design of a new therapeutic agent is a time-consuming and expensive process. The rise of machine intelligence provides a grand opportunity of expeditiously discovering novel drug candidates through smart search in the vast molecular structural space. In this paper, we propose a new approach called adversarial deep evolutionary learning (ADEL) to search for novel molecules in the latent space of an adversarial generative model and keep improving the latent representation space. In ADEL, a custom-made adversarial autoencoder (AAE) model is developed and trained under a deep evolutionary learning (DEL) process. This involves an initial training of the AAE model, followed by an integration of multi-objective evolutionary optimization in the continuous latent representation space of the AAE rather than the discrete structural space of molecules. By using the AAE, an arbitrary distribution can be provided to the training of AAE such that the latent representation space is set to that distribution. This allows for a starting latent space from which new samples can be produced. Throughout the process of learning, new samples of high-quality are generated after each iteration of training and then added back into the full dataset. Therefore, allowing for a more comprehensive procedure of understanding the data structure. This combination of evolving data and continuous learning not only enables improvement in the generative model, but the data as well. By comparing ADEL to the previous work in DEL, we see that ADEL can obtain better property distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信