A. Setiawan, A. Rusdinar, S. Rizal, Rina Mardiati, Abdul Wasik, Eki Ahmad Zaki Hamidi
{"title":"基于倒置相机的多机器人AGV机动建模模糊逻辑控制","authors":"A. Setiawan, A. Rusdinar, S. Rizal, Rina Mardiati, Abdul Wasik, Eki Ahmad Zaki Hamidi","doi":"10.1109/TSSA56819.2022.10063872","DOIUrl":null,"url":null,"abstract":"In a case where the robot used only has a vision sensor located on the robot with a navigational landmark system that is in the sky so that when a multi- robot system is made there will be several obstacles, including the relatively expensive financing side because the entire process is made in one robot so that when more than one robot is made, the processing components increase, prone to collisions because they are directed at the same landmark. Landmarks on the robot and the target, also moving the camera to the ceiling (inverted camera) with the aim of the camera workspace in detecting the movement of the robot is proposed in this study. A fuzzy logic control algorithm is used to determine the right motor speed (Vr) and left motor speed (VL) in PWM. The input used is the magnitude of the deviation angle of the robot direction with the target and distance. The distance here is taken from the length of the vector. Vector is obtained from the coordinates of the robot's point, direction, and target. In one case the robot is at coordinates A (41, 164), coordinates B (60, 164), and coordinates C (245, 73). From these coordinate points, the angle is 155.960and the vector length from the robot to the target is 223.37. Got VR 117 and VL 30 PWM. In the calculation, the results obtained are VR 116.4 PWM with an error rate of 0.0051.","PeriodicalId":164665,"journal":{"name":"2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy Logic Control for Modeling Multi Robot AGV Maneuver Based on Inverted Camera\",\"authors\":\"A. Setiawan, A. Rusdinar, S. Rizal, Rina Mardiati, Abdul Wasik, Eki Ahmad Zaki Hamidi\",\"doi\":\"10.1109/TSSA56819.2022.10063872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a case where the robot used only has a vision sensor located on the robot with a navigational landmark system that is in the sky so that when a multi- robot system is made there will be several obstacles, including the relatively expensive financing side because the entire process is made in one robot so that when more than one robot is made, the processing components increase, prone to collisions because they are directed at the same landmark. Landmarks on the robot and the target, also moving the camera to the ceiling (inverted camera) with the aim of the camera workspace in detecting the movement of the robot is proposed in this study. A fuzzy logic control algorithm is used to determine the right motor speed (Vr) and left motor speed (VL) in PWM. The input used is the magnitude of the deviation angle of the robot direction with the target and distance. The distance here is taken from the length of the vector. Vector is obtained from the coordinates of the robot's point, direction, and target. In one case the robot is at coordinates A (41, 164), coordinates B (60, 164), and coordinates C (245, 73). From these coordinate points, the angle is 155.960and the vector length from the robot to the target is 223.37. Got VR 117 and VL 30 PWM. In the calculation, the results obtained are VR 116.4 PWM with an error rate of 0.0051.\",\"PeriodicalId\":164665,\"journal\":{\"name\":\"2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSSA56819.2022.10063872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSA56819.2022.10063872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy Logic Control for Modeling Multi Robot AGV Maneuver Based on Inverted Camera
In a case where the robot used only has a vision sensor located on the robot with a navigational landmark system that is in the sky so that when a multi- robot system is made there will be several obstacles, including the relatively expensive financing side because the entire process is made in one robot so that when more than one robot is made, the processing components increase, prone to collisions because they are directed at the same landmark. Landmarks on the robot and the target, also moving the camera to the ceiling (inverted camera) with the aim of the camera workspace in detecting the movement of the robot is proposed in this study. A fuzzy logic control algorithm is used to determine the right motor speed (Vr) and left motor speed (VL) in PWM. The input used is the magnitude of the deviation angle of the robot direction with the target and distance. The distance here is taken from the length of the vector. Vector is obtained from the coordinates of the robot's point, direction, and target. In one case the robot is at coordinates A (41, 164), coordinates B (60, 164), and coordinates C (245, 73). From these coordinate points, the angle is 155.960and the vector length from the robot to the target is 223.37. Got VR 117 and VL 30 PWM. In the calculation, the results obtained are VR 116.4 PWM with an error rate of 0.0051.