对不规则睡眠打鼾时间和频率分析的贡献

Abdennour Alimohad, M. Rezki
{"title":"对不规则睡眠打鼾时间和频率分析的贡献","authors":"Abdennour Alimohad, M. Rezki","doi":"10.7251/els1923067r","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to give a summary analysis of human snoring and its episodes. In particular, we consider an acute snoring. In order to extract some frequency information of snoring signal, we apply the Fast Fourier Transform (FFT), Short Time Fourier Transform (STFT) algorithms, Discrete Wavelet Technique, and Power Spectral Density (PSD). Once irregular snoring characterized, we use a Voice Activity Detection (VAD) for snoring episode detection. Furthermore, we give comparative study of three types of thresholds that can control the VAD approach, a fixed threshold, a soft threshold, and a Gaussian threshold. Next, we use a Perceptual Evaluation of Speech Quality (PESQ) method to evaluate the efficiency of the VAD. We find that VAD based on Gaussian threshold is better.","PeriodicalId":290965,"journal":{"name":"Electronics ETF","volume":"401 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contribution to Time and Frequency Analysis of Irregular Sleep Snoring\",\"authors\":\"Abdennour Alimohad, M. Rezki\",\"doi\":\"10.7251/els1923067r\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to give a summary analysis of human snoring and its episodes. In particular, we consider an acute snoring. In order to extract some frequency information of snoring signal, we apply the Fast Fourier Transform (FFT), Short Time Fourier Transform (STFT) algorithms, Discrete Wavelet Technique, and Power Spectral Density (PSD). Once irregular snoring characterized, we use a Voice Activity Detection (VAD) for snoring episode detection. Furthermore, we give comparative study of three types of thresholds that can control the VAD approach, a fixed threshold, a soft threshold, and a Gaussian threshold. Next, we use a Perceptual Evaluation of Speech Quality (PESQ) method to evaluate the efficiency of the VAD. We find that VAD based on Gaussian threshold is better.\",\"PeriodicalId\":290965,\"journal\":{\"name\":\"Electronics ETF\",\"volume\":\"401 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics ETF\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7251/els1923067r\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics ETF","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7251/els1923067r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是对人类打鼾及其发作进行总结分析。我们特别考虑急性打鼾。为了提取鼾声信号的部分频率信息,我们应用了快速傅立叶变换(FFT)、短时傅立叶变换(STFT)算法、离散小波技术和功率谱密度(PSD)算法。一旦不规则打鼾的特征,我们使用语音活动检测(VAD)来检测打鼾事件。此外,我们还比较研究了三种可以控制VAD方法的阈值,即固定阈值,软阈值和高斯阈值。接下来,我们使用语音质量感知评估(PESQ)方法来评估VAD的效率。我们发现基于高斯阈值的VAD算法效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contribution to Time and Frequency Analysis of Irregular Sleep Snoring
The purpose of this paper is to give a summary analysis of human snoring and its episodes. In particular, we consider an acute snoring. In order to extract some frequency information of snoring signal, we apply the Fast Fourier Transform (FFT), Short Time Fourier Transform (STFT) algorithms, Discrete Wavelet Technique, and Power Spectral Density (PSD). Once irregular snoring characterized, we use a Voice Activity Detection (VAD) for snoring episode detection. Furthermore, we give comparative study of three types of thresholds that can control the VAD approach, a fixed threshold, a soft threshold, and a Gaussian threshold. Next, we use a Perceptual Evaluation of Speech Quality (PESQ) method to evaluate the efficiency of the VAD. We find that VAD based on Gaussian threshold is better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信