停止辅音与声音干扰的分离

Guoning Hu, Deliang Wang
{"title":"停止辅音与声音干扰的分离","authors":"Guoning Hu, Deliang Wang","doi":"10.1109/NNSP.2003.1318064","DOIUrl":null,"url":null,"abstract":"Speech segregation from acoustic interference is a very challenging task. Previous systems have dealt with voiced speech with success, but they cannot handle unvoiced speech. We study the segregation of stop consonants, which contain significant unvoiced signals. We propose a novel method that employs onset as a major cue to segregate stop consonants. Our system first detects stops through onset detection and Bayesian classification of acoustic-phonetic features, and then performs grouping based on onset coincidence. The system has been tested and performs well on utterances mixed with various types of interference.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Segregation of stop consonants from acoustic interference\",\"authors\":\"Guoning Hu, Deliang Wang\",\"doi\":\"10.1109/NNSP.2003.1318064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech segregation from acoustic interference is a very challenging task. Previous systems have dealt with voiced speech with success, but they cannot handle unvoiced speech. We study the segregation of stop consonants, which contain significant unvoiced signals. We propose a novel method that employs onset as a major cue to segregate stop consonants. Our system first detects stops through onset detection and Bayesian classification of acoustic-phonetic features, and then performs grouping based on onset coincidence. The system has been tested and performs well on utterances mixed with various types of interference.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从声干扰中分离语音是一个非常具有挑战性的任务。以前的系统已经成功地处理了浊音语音,但它们不能处理浊音语音。我们研究停止辅音的分离,其中包含重要的不发音信号。我们提出了一种新的方法,以起音为主要线索来分离停止辅音。我们的系统首先通过起音检测和贝叶斯声学-语音特征分类来检测停顿,然后根据起音重合进行分组。该系统已经过测试,在混杂各种干扰的语音中表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segregation of stop consonants from acoustic interference
Speech segregation from acoustic interference is a very challenging task. Previous systems have dealt with voiced speech with success, but they cannot handle unvoiced speech. We study the segregation of stop consonants, which contain significant unvoiced signals. We propose a novel method that employs onset as a major cue to segregate stop consonants. Our system first detects stops through onset detection and Bayesian classification of acoustic-phonetic features, and then performs grouping based on onset coincidence. The system has been tested and performs well on utterances mixed with various types of interference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信