{"title":"六边形是标杆:设计自动化的硅悬垂键逻辑","authors":"Marcel Walter, S. S. H. Ng, K. Waluś, R. Wille","doi":"10.1145/3489517.3530525","DOIUrl":null,"url":null,"abstract":"Field-coupled Nanocomputing (FCN) defines a class of post-CMOS nanotechnologies that promises compact layouts, low power operation, and high clock rates. Recent breakthroughs in the fabrication of Silicon Dangling Bonds (SiDBs) acting as quantum dots enabled the demonstration of a sub-30 nm2 OR gate and wire segments. This motivated the research community to invest manual labor in the design of additional gates and whole circuits which, however, is currently severely limited by scalability issues. In this work, these limitations are overcome by the introduction of a design automation framework that establishes a flexible topology based on hexagons as well as a corresponding Bestagon gate library for this technology and, additionally, provides automatic methods for physical design. By this, the first design automation solution for the promising SiDB platform is proposed. In an effort to support open research and open data, the resulting framework and all design files will be made available.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"355 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Hexagons are the bestagons: design automation for silicon dangling bond logic\",\"authors\":\"Marcel Walter, S. S. H. Ng, K. Waluś, R. Wille\",\"doi\":\"10.1145/3489517.3530525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Field-coupled Nanocomputing (FCN) defines a class of post-CMOS nanotechnologies that promises compact layouts, low power operation, and high clock rates. Recent breakthroughs in the fabrication of Silicon Dangling Bonds (SiDBs) acting as quantum dots enabled the demonstration of a sub-30 nm2 OR gate and wire segments. This motivated the research community to invest manual labor in the design of additional gates and whole circuits which, however, is currently severely limited by scalability issues. In this work, these limitations are overcome by the introduction of a design automation framework that establishes a flexible topology based on hexagons as well as a corresponding Bestagon gate library for this technology and, additionally, provides automatic methods for physical design. By this, the first design automation solution for the promising SiDB platform is proposed. In an effort to support open research and open data, the resulting framework and all design files will be made available.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"355 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hexagons are the bestagons: design automation for silicon dangling bond logic
Field-coupled Nanocomputing (FCN) defines a class of post-CMOS nanotechnologies that promises compact layouts, low power operation, and high clock rates. Recent breakthroughs in the fabrication of Silicon Dangling Bonds (SiDBs) acting as quantum dots enabled the demonstration of a sub-30 nm2 OR gate and wire segments. This motivated the research community to invest manual labor in the design of additional gates and whole circuits which, however, is currently severely limited by scalability issues. In this work, these limitations are overcome by the introduction of a design automation framework that establishes a flexible topology based on hexagons as well as a corresponding Bestagon gate library for this technology and, additionally, provides automatic methods for physical design. By this, the first design automation solution for the promising SiDB platform is proposed. In an effort to support open research and open data, the resulting framework and all design files will be made available.