基于声纳系统的水下构筑物环境测绘

Bochen Ma, Tiancheng Du, T. Miyoshi
{"title":"基于声纳系统的水下构筑物环境测绘","authors":"Bochen Ma, Tiancheng Du, T. Miyoshi","doi":"10.20965/jrm.2023.p1092","DOIUrl":null,"url":null,"abstract":"Recently, underwater robotics has rapidly developed, and is often used in open-water exploration and underwater operations in known environments. However, there are still several problems in exploring the interiors of complex underwater environments, which are essential for scientific exploration and industrial applications, such as caves and shipwrecks. This study aims to complete the exploration of the environment of structures under water bodies. A real-time manipulative small underwater robot was designed and developed. The robot’s autonomous depth control and linear motion-assisted control are also realized by real-time sensor data processing, which provides stability and operability to move in small areas and complex environments. The sonar system is used to construct a submap for small-area scanning. Finally, by combining the odometer algorithm and contour extraction, the submaps are stitched together to construct a complete map of the internal underwater environment.","PeriodicalId":178614,"journal":{"name":"J. Robotics Mechatronics","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental Mapping of Underwater Structures Based on Remotely Operated Vehicles with Sonar System\",\"authors\":\"Bochen Ma, Tiancheng Du, T. Miyoshi\",\"doi\":\"10.20965/jrm.2023.p1092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, underwater robotics has rapidly developed, and is often used in open-water exploration and underwater operations in known environments. However, there are still several problems in exploring the interiors of complex underwater environments, which are essential for scientific exploration and industrial applications, such as caves and shipwrecks. This study aims to complete the exploration of the environment of structures under water bodies. A real-time manipulative small underwater robot was designed and developed. The robot’s autonomous depth control and linear motion-assisted control are also realized by real-time sensor data processing, which provides stability and operability to move in small areas and complex environments. The sonar system is used to construct a submap for small-area scanning. Finally, by combining the odometer algorithm and contour extraction, the submaps are stitched together to construct a complete map of the internal underwater environment.\",\"PeriodicalId\":178614,\"journal\":{\"name\":\"J. Robotics Mechatronics\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Robotics Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2023.p1092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Robotics Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,水下机器人技术得到了迅速发展,并经常用于开放水域勘探和已知环境下的水下作业。然而,在探索复杂水下环境的内部仍然存在一些问题,这些环境对于科学探索和工业应用至关重要,例如洞穴和沉船。本研究旨在完成对水体下构造环境的探索。设计并研制了一种实时操纵式小型水下机器人。通过实时传感器数据处理,实现了机器人的自主深度控制和线性运动辅助控制,提供了在小区域和复杂环境中移动的稳定性和可操作性。利用声纳系统构造子图进行小区域扫描。最后,结合里程计算法和等高线提取,将子图拼接在一起,构建完整的水下内部环境图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental Mapping of Underwater Structures Based on Remotely Operated Vehicles with Sonar System
Recently, underwater robotics has rapidly developed, and is often used in open-water exploration and underwater operations in known environments. However, there are still several problems in exploring the interiors of complex underwater environments, which are essential for scientific exploration and industrial applications, such as caves and shipwrecks. This study aims to complete the exploration of the environment of structures under water bodies. A real-time manipulative small underwater robot was designed and developed. The robot’s autonomous depth control and linear motion-assisted control are also realized by real-time sensor data processing, which provides stability and operability to move in small areas and complex environments. The sonar system is used to construct a submap for small-area scanning. Finally, by combining the odometer algorithm and contour extraction, the submaps are stitched together to construct a complete map of the internal underwater environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信