计算0 < p < 1的p范数的接近算子

Feishe Chen, Lixin Shen, B. Suter
{"title":"计算0 < p < 1的p范数的接近算子","authors":"Feishe Chen, Lixin Shen, B. Suter","doi":"10.1049/iet-spr.2015.0244","DOIUrl":null,"url":null,"abstract":"Sparse modelling with the l p norm of 0 ≤ p ≤ 1 requires the availability of the proximity operator of the l p norm. The proximity operators of the l0 and l1 norms are the well-known hard- and soft-thresholding estimators, respectively. In this study, the authors give a complete study on the properties of the proximity operator of the l p norm. Based on these properties, explicit formulas of the proximity operators of the l1/2 norm and l2/3 norm are derived with simple proofs; for other values of p, an iterative Newton's method is developed to compute the proximity operator of the l p norm by fully exploring the available proximity operators of the l0, l1/2, l2/3, and l1 norms. As applications, the proximity operator of the l p norm with 0 ≤ p ≤ 1 is applied to the l p -regularisation for compressive sensing and image restoration.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Computing the proximity operator of the ℓp norm with 0 < p < 1\",\"authors\":\"Feishe Chen, Lixin Shen, B. Suter\",\"doi\":\"10.1049/iet-spr.2015.0244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse modelling with the l p norm of 0 ≤ p ≤ 1 requires the availability of the proximity operator of the l p norm. The proximity operators of the l0 and l1 norms are the well-known hard- and soft-thresholding estimators, respectively. In this study, the authors give a complete study on the properties of the proximity operator of the l p norm. Based on these properties, explicit formulas of the proximity operators of the l1/2 norm and l2/3 norm are derived with simple proofs; for other values of p, an iterative Newton's method is developed to compute the proximity operator of the l p norm by fully exploring the available proximity operators of the l0, l1/2, l2/3, and l1 norms. As applications, the proximity operator of the l p norm with 0 ≤ p ≤ 1 is applied to the l p -regularisation for compressive sensing and image restoration.\",\"PeriodicalId\":272888,\"journal\":{\"name\":\"IET Signal Process.\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-spr.2015.0244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2015.0244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

l p范数为0≤p≤1的稀疏建模要求l p范数的邻近算子的可用性。10范数和l1范数的接近算子分别是众所周知的硬阈值估计和软阈值估计。本文对l p范数的接近算子的性质进行了较为全面的研究。基于这些性质,导出了l1/2范数和l2/3范数的邻近算子的显式公式,并给出了简单的证明;对于p的其他值,通过充分探索10、l1/2、l2/3和l1范数的可用接近算子,开发了迭代牛顿法来计算l1范数的接近算子。作为应用,将l p范数0≤p≤1的接近算子应用于l p -正则化压缩感知和图像恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing the proximity operator of the ℓp norm with 0 < p < 1
Sparse modelling with the l p norm of 0 ≤ p ≤ 1 requires the availability of the proximity operator of the l p norm. The proximity operators of the l0 and l1 norms are the well-known hard- and soft-thresholding estimators, respectively. In this study, the authors give a complete study on the properties of the proximity operator of the l p norm. Based on these properties, explicit formulas of the proximity operators of the l1/2 norm and l2/3 norm are derived with simple proofs; for other values of p, an iterative Newton's method is developed to compute the proximity operator of the l p norm by fully exploring the available proximity operators of the l0, l1/2, l2/3, and l1 norms. As applications, the proximity operator of the l p norm with 0 ≤ p ≤ 1 is applied to the l p -regularisation for compressive sensing and image restoration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信