三维疾病评估中身体摇摆的数值分析

Kohki Nakane, Rentaro Ono, Shota Yamamoto, M. Takada, Fumiya Kinoshita, A. Sugiura, Y. Matsuura, Kazuhiro Fujikake, H. Takada
{"title":"三维疾病评估中身体摇摆的数值分析","authors":"Kohki Nakane, Rentaro Ono, Shota Yamamoto, M. Takada, Fumiya Kinoshita, A. Sugiura, Y. Matsuura, Kazuhiro Fujikake, H. Takada","doi":"10.1109/ICCSE49874.2020.9201640","DOIUrl":null,"url":null,"abstract":"We have applied this artificial intelligence (AI) system to numerical simulations of the stabilogram whose randomness is remarkably greater than that of the other bio-signal in accordance with the nonlinear analysis. We have succeeded in findings of the mathematical models of the body sway in the elderly with use of the Generative Adversarial Networks (GANs). Trying to visualize internal state of the discriminator layer in our GAN, we can discuss how the AI captures the feature of patterns in the stabilograms recorded during the 3D sickness. Especially in the stabilograms measured during the 3D sickness, cusp patterns could be extracted as a high contribution to the output of the discriminator.","PeriodicalId":350703,"journal":{"name":"2020 15th International Conference on Computer Science & Education (ICCSE)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Analysis of Body Sway for Evaluation of 3D Sickness\",\"authors\":\"Kohki Nakane, Rentaro Ono, Shota Yamamoto, M. Takada, Fumiya Kinoshita, A. Sugiura, Y. Matsuura, Kazuhiro Fujikake, H. Takada\",\"doi\":\"10.1109/ICCSE49874.2020.9201640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have applied this artificial intelligence (AI) system to numerical simulations of the stabilogram whose randomness is remarkably greater than that of the other bio-signal in accordance with the nonlinear analysis. We have succeeded in findings of the mathematical models of the body sway in the elderly with use of the Generative Adversarial Networks (GANs). Trying to visualize internal state of the discriminator layer in our GAN, we can discuss how the AI captures the feature of patterns in the stabilograms recorded during the 3D sickness. Especially in the stabilograms measured during the 3D sickness, cusp patterns could be extracted as a high contribution to the output of the discriminator.\",\"PeriodicalId\":350703,\"journal\":{\"name\":\"2020 15th International Conference on Computer Science & Education (ICCSE)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Conference on Computer Science & Education (ICCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSE49874.2020.9201640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE49874.2020.9201640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

根据非线性分析,我们将该人工智能系统应用于稳定图的数值模拟,稳定图的随机性明显大于其他生物信号的随机性。我们利用生成对抗网络(GANs)成功地发现了老年人身体摇摆的数学模型。试图可视化GAN中鉴别器层的内部状态,我们可以讨论人工智能如何捕捉在3D疾病期间记录的稳定图中的模式特征。特别是在三维疾病期间测量的稳定图中,可以提取尖峰模式,作为鉴别器输出的高贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Analysis of Body Sway for Evaluation of 3D Sickness
We have applied this artificial intelligence (AI) system to numerical simulations of the stabilogram whose randomness is remarkably greater than that of the other bio-signal in accordance with the nonlinear analysis. We have succeeded in findings of the mathematical models of the body sway in the elderly with use of the Generative Adversarial Networks (GANs). Trying to visualize internal state of the discriminator layer in our GAN, we can discuss how the AI captures the feature of patterns in the stabilograms recorded during the 3D sickness. Especially in the stabilograms measured during the 3D sickness, cusp patterns could be extracted as a high contribution to the output of the discriminator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信