{"title":"ENWRICH:一种并行文件系统的计算机处理器写缓存方案","authors":"A. Purakayastha, C. Ellis, D. Kotz","doi":"10.1145/236017.236034","DOIUrl":null,"url":null,"abstract":"Many parallel scientific applications need high-performance I/O. Unfortunately, end-to-end parallel-I/O performance has not been able to keep up with substantial improvements in parallel-I/O hardware because of poor parallel file-system software. Many radical changes, both at the interface level and the implementation level, have recently been proposed. One such proposed interface is {\\em collective I/O}, which allows parallel jobs to request transfer of large contiguous objects in a single request, thereby preserving useful semantic information that would otherwise be lost if the transfer were expressed as per-processor non-contiguous requests. Kotz has proposed {\\em disk-directed I/O} as an efficient implementation technique for collective-I/O operations, where the compute processors make a single collective data-transfer request, and the I/O processors thereafter take full control of the actual data transfer, exploiting their detailed knowledge of the disk-layout to attain substantially improved performance. Recent parallel file-system usage studies show that writes to write-only files are a dominant part of the workload. Therefore, optimizing writes could have a significant impact on overall performance. In this paper, we propose ENWRICH, a compute-processor write-caching scheme for write-only files in parallel file systems. ENWRICH combines low-overhead write caching at the compute processors with high performance disk-directed I/O at the I/O processors to achieve both low latency and high bandwidth. This combination facilitates the use of the powerful disk-directed I/O technique independent of any particular choice of interface. By collecting writes over many files and applications, ENWRICH lets the I/O processors optimize disk I/O over a large pool of requests. We evaluate our design via simulated implementation and show that ENWRICH achieves high performance for various configurations and workloads.","PeriodicalId":442608,"journal":{"name":"Workshop on I/O in Parallel and Distributed Systems","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"ENWRICH: a compute-processor write caching scheme for parallel file systems\",\"authors\":\"A. Purakayastha, C. Ellis, D. Kotz\",\"doi\":\"10.1145/236017.236034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many parallel scientific applications need high-performance I/O. Unfortunately, end-to-end parallel-I/O performance has not been able to keep up with substantial improvements in parallel-I/O hardware because of poor parallel file-system software. Many radical changes, both at the interface level and the implementation level, have recently been proposed. One such proposed interface is {\\\\em collective I/O}, which allows parallel jobs to request transfer of large contiguous objects in a single request, thereby preserving useful semantic information that would otherwise be lost if the transfer were expressed as per-processor non-contiguous requests. Kotz has proposed {\\\\em disk-directed I/O} as an efficient implementation technique for collective-I/O operations, where the compute processors make a single collective data-transfer request, and the I/O processors thereafter take full control of the actual data transfer, exploiting their detailed knowledge of the disk-layout to attain substantially improved performance. Recent parallel file-system usage studies show that writes to write-only files are a dominant part of the workload. Therefore, optimizing writes could have a significant impact on overall performance. In this paper, we propose ENWRICH, a compute-processor write-caching scheme for write-only files in parallel file systems. ENWRICH combines low-overhead write caching at the compute processors with high performance disk-directed I/O at the I/O processors to achieve both low latency and high bandwidth. This combination facilitates the use of the powerful disk-directed I/O technique independent of any particular choice of interface. By collecting writes over many files and applications, ENWRICH lets the I/O processors optimize disk I/O over a large pool of requests. We evaluate our design via simulated implementation and show that ENWRICH achieves high performance for various configurations and workloads.\",\"PeriodicalId\":442608,\"journal\":{\"name\":\"Workshop on I/O in Parallel and Distributed Systems\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on I/O in Parallel and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/236017.236034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on I/O in Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/236017.236034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ENWRICH: a compute-processor write caching scheme for parallel file systems
Many parallel scientific applications need high-performance I/O. Unfortunately, end-to-end parallel-I/O performance has not been able to keep up with substantial improvements in parallel-I/O hardware because of poor parallel file-system software. Many radical changes, both at the interface level and the implementation level, have recently been proposed. One such proposed interface is {\em collective I/O}, which allows parallel jobs to request transfer of large contiguous objects in a single request, thereby preserving useful semantic information that would otherwise be lost if the transfer were expressed as per-processor non-contiguous requests. Kotz has proposed {\em disk-directed I/O} as an efficient implementation technique for collective-I/O operations, where the compute processors make a single collective data-transfer request, and the I/O processors thereafter take full control of the actual data transfer, exploiting their detailed knowledge of the disk-layout to attain substantially improved performance. Recent parallel file-system usage studies show that writes to write-only files are a dominant part of the workload. Therefore, optimizing writes could have a significant impact on overall performance. In this paper, we propose ENWRICH, a compute-processor write-caching scheme for write-only files in parallel file systems. ENWRICH combines low-overhead write caching at the compute processors with high performance disk-directed I/O at the I/O processors to achieve both low latency and high bandwidth. This combination facilitates the use of the powerful disk-directed I/O technique independent of any particular choice of interface. By collecting writes over many files and applications, ENWRICH lets the I/O processors optimize disk I/O over a large pool of requests. We evaluate our design via simulated implementation and show that ENWRICH achieves high performance for various configurations and workloads.