Putri Regina Prayoga, Purnawansyah Purnawansyah, Tasrif Hasanuddin, Herdianti Darwis
{"title":"Klasifikasi Daun Herbal Menggunakan K-Nearest Neighbor dan Support Vector Machine dengan Fitur Fourier Descriptor","authors":"Putri Regina Prayoga, Purnawansyah Purnawansyah, Tasrif Hasanuddin, Herdianti Darwis","doi":"10.29408/edumatic.v7i1.17521","DOIUrl":null,"url":null,"abstract":"Indonesia is a rich country in herbal plants that can be used as traditional medicine. Leaves are one of the main components of herbal plants that are difficult to distinguish in texture and shape. This study aims to classify two types of herbal leaves, namely Sauropus androgynus and Moringa leaves using the K-nearest neighbor (KNN) and Support vector machine (SVM) with fourier descriptor (FD) feature extraction on texture and shape features. The research uses primary data collected through a smartphone camera as much as 480 image data with light and dark scenarios which are then divided into 80:20 training and testing data. Based on the research that has been done, it is found that the KNN for light scenario data and dark scenarios get 92% and 94% accuracy respectively. The test results using SVM with FD feature extraction obtain an accuracy of 96% for light and dark scenarios. Thus, SVM is more recommended in the classification of herbal leaf images.","PeriodicalId":314771,"journal":{"name":"Edumatic: Jurnal Pendidikan Informatika","volume":"449 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Edumatic: Jurnal Pendidikan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29408/edumatic.v7i1.17521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

印度尼西亚是一个草本植物丰富的国家,可以用作传统药物。叶子是草本植物的主要成分之一,在质地和形状上难以区分。本研究旨在利用k近邻(KNN)和支持向量机(SVM)结合纹理和形状特征的傅里叶描述子(FD)特征提取,对雌雄同体Sauropus and辣木(Moringa)两种草本植物叶片进行分类。该研究使用了通过智能手机摄像头收集的多达480张图像数据,其中包括明暗场景,然后将其分为80:20的训练和测试数据。在已有的研究基础上,发现光照场景数据和黑暗场景数据的KNN分别达到92%和94%的准确率。使用支持向量机和FD特征提取的测试结果在明暗场景下获得了96%的准确率。因此,在草药叶片图像的分类中,更推荐使用SVM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Klasifikasi Daun Herbal Menggunakan K-Nearest Neighbor dan Support Vector Machine dengan Fitur Fourier Descriptor
Indonesia is a rich country in herbal plants that can be used as traditional medicine. Leaves are one of the main components of herbal plants that are difficult to distinguish in texture and shape. This study aims to classify two types of herbal leaves, namely Sauropus androgynus and Moringa leaves using the K-nearest neighbor (KNN) and Support vector machine (SVM) with fourier descriptor (FD) feature extraction on texture and shape features. The research uses primary data collected through a smartphone camera as much as 480 image data with light and dark scenarios which are then divided into 80:20 training and testing data. Based on the research that has been done, it is found that the KNN for light scenario data and dark scenarios get 92% and 94% accuracy respectively. The test results using SVM with FD feature extraction obtain an accuracy of 96% for light and dark scenarios. Thus, SVM is more recommended in the classification of herbal leaf images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信