Hamilton-Jacobi-Bellman方程的风险规避模拟

A. Ruszczynski, Jianing Yao
{"title":"Hamilton-Jacobi-Bellman方程的风险规避模拟","authors":"A. Ruszczynski, Jianing Yao","doi":"10.1137/1.9781611974072.63","DOIUrl":null,"url":null,"abstract":"In this paper, we study the risk-averse control problem for diffusion processes. We make use of a forward–backward system of stochastic differential equations to evaluate a fixed policy and to formulate the optimal control problem. Weak formulation is established to facilitate the derivation of the risk-averse dynamic programming equation. We prove that the value function of the risk-averse control problem is a viscosity solution of a risk-averse analog of the Hamilton– Jacobi–Bellman equation. On the other hand, a verification theorem is provedwhen the classical solution of the equation exists.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"4 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Risk-Averse Analog of the Hamilton-Jacobi-Bellman Equation\",\"authors\":\"A. Ruszczynski, Jianing Yao\",\"doi\":\"10.1137/1.9781611974072.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the risk-averse control problem for diffusion processes. We make use of a forward–backward system of stochastic differential equations to evaluate a fixed policy and to formulate the optimal control problem. Weak formulation is established to facilitate the derivation of the risk-averse dynamic programming equation. We prove that the value function of the risk-averse control problem is a viscosity solution of a risk-averse analog of the Hamilton– Jacobi–Bellman equation. On the other hand, a verification theorem is provedwhen the classical solution of the equation exists.\",\"PeriodicalId\":193106,\"journal\":{\"name\":\"SIAM Conf. on Control and its Applications\",\"volume\":\"4 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Conf. on Control and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974072.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974072.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文研究扩散过程的风险厌恶控制问题。我们利用一个正反向随机微分方程系统来评估一个固定策略并给出最优控制问题。为了方便推导风险规避动态规划方程,建立了弱公式。证明了风险厌恶控制问题的值函数是Hamilton - Jacobi-Bellman方程的风险厌恶类比的粘滞解。另一方面,证明了当方程的经典解存在时的一个验证定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Risk-Averse Analog of the Hamilton-Jacobi-Bellman Equation
In this paper, we study the risk-averse control problem for diffusion processes. We make use of a forward–backward system of stochastic differential equations to evaluate a fixed policy and to formulate the optimal control problem. Weak formulation is established to facilitate the derivation of the risk-averse dynamic programming equation. We prove that the value function of the risk-averse control problem is a viscosity solution of a risk-averse analog of the Hamilton– Jacobi–Bellman equation. On the other hand, a verification theorem is provedwhen the classical solution of the equation exists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信