{"title":"利用松弛振荡神经元进行声源分离的耳蜗/AMtopic (CAM)和耳蜗/Spectrotopic (CSM)图谱","authors":"R. Pichevar, J. Rouat","doi":"10.1109/NNSP.2003.1318065","DOIUrl":null,"url":null,"abstract":"We use a two-layered unsupervised bio-inspired neural network to segregate sound sources, e.g. double-vowels or vowels intruded by nonstationary noise sources. The network consists of spiking neurons. The spiking neurons in both layers are modeled by relaxation oscillators. The first layer of the network is locally connected, while the second layer is a fully connected network. We show that in order to correctly segregate sound sources, we should either use Cochleotopic/AMtopic map (CAM) or Cochleotopic/Spectrotopic map (CSM) depending on the nature of the intruding sound source.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Cochleotopic/AMtopic (CAM) and Cochleotopic/Spectrotopic (CSM) map based sound sourcce separation using relaxatio oscillatory neurons\",\"authors\":\"R. Pichevar, J. Rouat\",\"doi\":\"10.1109/NNSP.2003.1318065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use a two-layered unsupervised bio-inspired neural network to segregate sound sources, e.g. double-vowels or vowels intruded by nonstationary noise sources. The network consists of spiking neurons. The spiking neurons in both layers are modeled by relaxation oscillators. The first layer of the network is locally connected, while the second layer is a fully connected network. We show that in order to correctly segregate sound sources, we should either use Cochleotopic/AMtopic map (CAM) or Cochleotopic/Spectrotopic map (CSM) depending on the nature of the intruding sound source.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cochleotopic/AMtopic (CAM) and Cochleotopic/Spectrotopic (CSM) map based sound sourcce separation using relaxatio oscillatory neurons
We use a two-layered unsupervised bio-inspired neural network to segregate sound sources, e.g. double-vowels or vowels intruded by nonstationary noise sources. The network consists of spiking neurons. The spiking neurons in both layers are modeled by relaxation oscillators. The first layer of the network is locally connected, while the second layer is a fully connected network. We show that in order to correctly segregate sound sources, we should either use Cochleotopic/AMtopic map (CAM) or Cochleotopic/Spectrotopic map (CSM) depending on the nature of the intruding sound source.