基于深度学习的绘画人脸检测的可解释人工智能方法

Siwar Ben Gamra, E. Zagrouba, A. Bigand
{"title":"基于深度学习的绘画人脸检测的可解释人工智能方法","authors":"Siwar Ben Gamra, E. Zagrouba, A. Bigand","doi":"10.1109/ISCC58397.2023.10218048","DOIUrl":null,"url":null,"abstract":"Recently, despite the impressive success of deep learning, eXplainable Artificial Intelligence (XAI) is becoming increasingly important research area for ensuring transparency and trust in deep models, especially in the field of artwork analysis. In this paper, we conduct an analysis of major research contribution milestones in perturbation-based XAI methods and propose a novel iterative method based guided perturbations to explain face detection in Tenebrism painting images. Our method is independent of the model's architecture, outperforms the state-of-the-art method and requires very little computational resources (no need for GPUs). Quantitative and qualitative evaluation shows effectiveness of the proposed method.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An eXplainable Artificial Intelligence Method for Deep Learning-Based Face Detection in Paintings\",\"authors\":\"Siwar Ben Gamra, E. Zagrouba, A. Bigand\",\"doi\":\"10.1109/ISCC58397.2023.10218048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, despite the impressive success of deep learning, eXplainable Artificial Intelligence (XAI) is becoming increasingly important research area for ensuring transparency and trust in deep models, especially in the field of artwork analysis. In this paper, we conduct an analysis of major research contribution milestones in perturbation-based XAI methods and propose a novel iterative method based guided perturbations to explain face detection in Tenebrism painting images. Our method is independent of the model's architecture, outperforms the state-of-the-art method and requires very little computational resources (no need for GPUs). Quantitative and qualitative evaluation shows effectiveness of the proposed method.\",\"PeriodicalId\":265337,\"journal\":{\"name\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC58397.2023.10218048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,尽管深度学习取得了令人印象深刻的成功,但可解释人工智能(XAI)正在成为确保深度模型透明度和信任的越来越重要的研究领域,特别是在艺术品分析领域。在本文中,我们对基于微扰的XAI方法的主要研究贡献里程碑进行了分析,并提出了一种新的基于引导微扰的迭代方法来解释暗粉主义绘画图像中的人脸检测。我们的方法独立于模型的架构,优于最先进的方法,并且只需要很少的计算资源(不需要gpu)。定量和定性评价表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An eXplainable Artificial Intelligence Method for Deep Learning-Based Face Detection in Paintings
Recently, despite the impressive success of deep learning, eXplainable Artificial Intelligence (XAI) is becoming increasingly important research area for ensuring transparency and trust in deep models, especially in the field of artwork analysis. In this paper, we conduct an analysis of major research contribution milestones in perturbation-based XAI methods and propose a novel iterative method based guided perturbations to explain face detection in Tenebrism painting images. Our method is independent of the model's architecture, outperforms the state-of-the-art method and requires very little computational resources (no need for GPUs). Quantitative and qualitative evaluation shows effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信