{"title":"稳定和Palm耦合下的泊松过程近似","authors":"O. Bobrowski, Matthias Schulte, D. Yogeshwaran","doi":"10.5802/ahl.156","DOIUrl":null,"url":null,"abstract":". — We present new Poisson process approximation results for stabilizing functionals of Poisson and binomial point processes. These functionals are allowed to have an unbounded range of interaction and encompass many examples in stochastic geometry. Our bounds are derived for the Kantorovich–Rubinstein distance using the generator approach to","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Poisson process approximation under stabilization and Palm coupling\",\"authors\":\"O. Bobrowski, Matthias Schulte, D. Yogeshwaran\",\"doi\":\"10.5802/ahl.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". — We present new Poisson process approximation results for stabilizing functionals of Poisson and binomial point processes. These functionals are allowed to have an unbounded range of interaction and encompass many examples in stochastic geometry. Our bounds are derived for the Kantorovich–Rubinstein distance using the generator approach to\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ahl.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poisson process approximation under stabilization and Palm coupling
. — We present new Poisson process approximation results for stabilizing functionals of Poisson and binomial point processes. These functionals are allowed to have an unbounded range of interaction and encompass many examples in stochastic geometry. Our bounds are derived for the Kantorovich–Rubinstein distance using the generator approach to