Bibekananda Jena, Punyaban Patel, G. Sinha
{"title":"基于人工神经网络和非局部均值滤波的随机值脉冲噪声抑制技术","authors":"Bibekananda Jena, Punyaban Patel, G. Sinha","doi":"10.4018/IJRSDA.2018040108","DOIUrl":null,"url":null,"abstract":"AnewtechniqueforsuppressionofRandomvaluedimpulsenoisefromthecontaminateddigital imageusingBackPropagationNeuralNetworkisproposedinthispaper.Thealgorithmsconsistof twostagesi.e.DetectionofImpulsenoiseandFilteringofidentifiednoisypixels.Toclassifybetween noisyandnon-noisyelementpresentintheimageafeed-forwardneuralnetworkhasbeentrained withwell-knownbackpropagationalgorithminthefirststage.Tomakethedetectionmethodmore accurate,Emphasishasbeengivenonselectionofproperinputandgenerationoftrainingpatterns. Thecorruptedpixelsareundergoingnon-localmeanfilteringemployedinthesecondstage.The effectivenessoftheproposedtechniqueisevaluatedusingwellknownstandarddigitalimagesat different levelof impulsenoise.Experiments show that themethodproposedherehasexcellent impulsenoisesuppressioncapability. KEywoRDS Artificial Neural Network (ANN), Image Denoising, Peak Signal-to-Noise Ratio (PSNR), Random Valued Impulse Noise (RVIN)","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"An Efficient Random Valued Impulse Noise Suppression Technique Using Artificial Neural Network and Non-Local Mean Filter\",\"authors\":\"Bibekananda Jena, Punyaban Patel, G. Sinha\",\"doi\":\"10.4018/IJRSDA.2018040108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AnewtechniqueforsuppressionofRandomvaluedimpulsenoisefromthecontaminateddigital imageusingBackPropagationNeuralNetworkisproposedinthispaper.Thealgorithmsconsistof twostagesi.e.DetectionofImpulsenoiseandFilteringofidentifiednoisypixels.Toclassifybetween noisyandnon-noisyelementpresentintheimageafeed-forwardneuralnetworkhasbeentrained withwell-knownbackpropagationalgorithminthefirststage.Tomakethedetectionmethodmore accurate,Emphasishasbeengivenonselectionofproperinputandgenerationoftrainingpatterns. Thecorruptedpixelsareundergoingnon-localmeanfilteringemployedinthesecondstage.The effectivenessoftheproposedtechniqueisevaluatedusingwellknownstandarddigitalimagesat different levelof impulsenoise.Experiments show that themethodproposedherehasexcellent impulsenoisesuppressioncapability. KEywoRDS Artificial Neural Network (ANN), Image Denoising, Peak Signal-to-Noise Ratio (PSNR), Random Valued Impulse Noise (RVIN)\",\"PeriodicalId\":152357,\"journal\":{\"name\":\"Int. J. Rough Sets Data Anal.\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Rough Sets Data Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRSDA.2018040108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2018040108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29