基于人工神经网络和非局部均值滤波的随机值脉冲噪声抑制技术

Bibekananda Jena, Punyaban Patel, G. Sinha
{"title":"基于人工神经网络和非局部均值滤波的随机值脉冲噪声抑制技术","authors":"Bibekananda Jena, Punyaban Patel, G. Sinha","doi":"10.4018/IJRSDA.2018040108","DOIUrl":null,"url":null,"abstract":"AnewtechniqueforsuppressionofRandomvaluedimpulsenoisefromthecontaminateddigital imageusingBackPropagationNeuralNetworkisproposedinthispaper.Thealgorithmsconsistof twostagesi.e.DetectionofImpulsenoiseandFilteringofidentifiednoisypixels.Toclassifybetween noisyandnon-noisyelementpresentintheimageafeed-forwardneuralnetworkhasbeentrained withwell-knownbackpropagationalgorithminthefirststage.Tomakethedetectionmethodmore accurate,Emphasishasbeengivenonselectionofproperinputandgenerationoftrainingpatterns. Thecorruptedpixelsareundergoingnon-localmeanfilteringemployedinthesecondstage.The effectivenessoftheproposedtechniqueisevaluatedusingwellknownstandarddigitalimagesat different levelof impulsenoise.Experiments show that themethodproposedherehasexcellent impulsenoisesuppressioncapability. KEywoRDS Artificial Neural Network (ANN), Image Denoising, Peak Signal-to-Noise Ratio (PSNR), Random Valued Impulse Noise (RVIN)","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"An Efficient Random Valued Impulse Noise Suppression Technique Using Artificial Neural Network and Non-Local Mean Filter\",\"authors\":\"Bibekananda Jena, Punyaban Patel, G. Sinha\",\"doi\":\"10.4018/IJRSDA.2018040108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AnewtechniqueforsuppressionofRandomvaluedimpulsenoisefromthecontaminateddigital imageusingBackPropagationNeuralNetworkisproposedinthispaper.Thealgorithmsconsistof twostagesi.e.DetectionofImpulsenoiseandFilteringofidentifiednoisypixels.Toclassifybetween noisyandnon-noisyelementpresentintheimageafeed-forwardneuralnetworkhasbeentrained withwell-knownbackpropagationalgorithminthefirststage.Tomakethedetectionmethodmore accurate,Emphasishasbeengivenonselectionofproperinputandgenerationoftrainingpatterns. Thecorruptedpixelsareundergoingnon-localmeanfilteringemployedinthesecondstage.The effectivenessoftheproposedtechniqueisevaluatedusingwellknownstandarddigitalimagesat different levelof impulsenoise.Experiments show that themethodproposedherehasexcellent impulsenoisesuppressioncapability. KEywoRDS Artificial Neural Network (ANN), Image Denoising, Peak Signal-to-Noise Ratio (PSNR), Random Valued Impulse Noise (RVIN)\",\"PeriodicalId\":152357,\"journal\":{\"name\":\"Int. J. Rough Sets Data Anal.\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Rough Sets Data Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRSDA.2018040108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2018040108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

AnewtechniqueforsuppressionofRandomvaluedimpulsenoisefromthecontaminateddigital imageusingBackPropagationNeuralNetworkisproposedinthispaper。Thealgorithmsconsistof twostagesi.e.DetectionofImpulsenoiseandFilteringofidentifiednoisypixels。Toclassifybetween noisyandnon-noisyelementpresentintheimageafeed-forwardneuralnetworkhasbeentrained withwell-knownbackpropagationalgorithminthefirststage。Tomakethedetectionmethodmore准确,Emphasishasbeengivenonselectionofproperinputandgenerationoftrainingpatterns。Thecorruptedpixelsareundergoingnon-localmeanfilteringemployedinthesecondstage。The effectivenessoftheproposedtechniqueisevaluatedusingwellknownstandarddigitalimagesat different[不同]levelof impulsenoise。Experiments show_ that_ themethodproposedherehasexcellent impulsenoisesuppressioncapability。关键词:人工神经网络,图像去噪,峰值信噪比,随机值脉冲噪声
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Random Valued Impulse Noise Suppression Technique Using Artificial Neural Network and Non-Local Mean Filter
AnewtechniqueforsuppressionofRandomvaluedimpulsenoisefromthecontaminateddigital imageusingBackPropagationNeuralNetworkisproposedinthispaper.Thealgorithmsconsistof twostagesi.e.DetectionofImpulsenoiseandFilteringofidentifiednoisypixels.Toclassifybetween noisyandnon-noisyelementpresentintheimageafeed-forwardneuralnetworkhasbeentrained withwell-knownbackpropagationalgorithminthefirststage.Tomakethedetectionmethodmore accurate,Emphasishasbeengivenonselectionofproperinputandgenerationoftrainingpatterns. Thecorruptedpixelsareundergoingnon-localmeanfilteringemployedinthesecondstage.The effectivenessoftheproposedtechniqueisevaluatedusingwellknownstandarddigitalimagesat different levelof impulsenoise.Experiments show that themethodproposedherehasexcellent impulsenoisesuppressioncapability. KEywoRDS Artificial Neural Network (ANN), Image Denoising, Peak Signal-to-Noise Ratio (PSNR), Random Valued Impulse Noise (RVIN)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信