TIRAMOLA:通过云管理平台弹性发放nosql

I. Konstantinou, E. Angelou, Dimitrios Tsoumakos, Christina Boumpouka, N. Koziris, S. Sioutas
{"title":"TIRAMOLA:通过云管理平台弹性发放nosql","authors":"I. Konstantinou, E. Angelou, Dimitrios Tsoumakos, Christina Boumpouka, N. Koziris, S. Sioutas","doi":"10.1145/2213836.2213943","DOIUrl":null,"url":null,"abstract":"NoSQL databases focus on analytical processing of large scale datasets, offering increased scalability over commodity hardware. One of their strongest features is elasticity, which allows for fairly portioned premiums and high-quality performance. Yet, the process of adaptive expansion and contraction of resources usually involves a lot of manual effort, often requiring the definition of the conditions for scaling up or down to be provided by the users. To date, there exists no open-source system for automatic resizing of NoSQL clusters. In this demonstration, we present TIRAMOLA, a modular, cloud-enabled framework for monitoring and adaptively resizing NoSQL clusters. Our system incorporates a decision-making module which allows for optimal cluster resize actions in order to maximize any quantifiable reward function provided together with life-long adaptation to workload or infrastructural changes. The audience will be able to initiate HBase clusters of various sizes and apply varying workloads through multiple YCSB clients. The attendees will be able to watch, in real-time, the system perform automatic VM additions and removals as well as how cluster performance metrics change relative to the optimization parameters of their choice.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"TIRAMOLA: elastic nosql provisioning through a cloud management platform\",\"authors\":\"I. Konstantinou, E. Angelou, Dimitrios Tsoumakos, Christina Boumpouka, N. Koziris, S. Sioutas\",\"doi\":\"10.1145/2213836.2213943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NoSQL databases focus on analytical processing of large scale datasets, offering increased scalability over commodity hardware. One of their strongest features is elasticity, which allows for fairly portioned premiums and high-quality performance. Yet, the process of adaptive expansion and contraction of resources usually involves a lot of manual effort, often requiring the definition of the conditions for scaling up or down to be provided by the users. To date, there exists no open-source system for automatic resizing of NoSQL clusters. In this demonstration, we present TIRAMOLA, a modular, cloud-enabled framework for monitoring and adaptively resizing NoSQL clusters. Our system incorporates a decision-making module which allows for optimal cluster resize actions in order to maximize any quantifiable reward function provided together with life-long adaptation to workload or infrastructural changes. The audience will be able to initiate HBase clusters of various sizes and apply varying workloads through multiple YCSB clients. The attendees will be able to watch, in real-time, the system perform automatic VM additions and removals as well as how cluster performance metrics change relative to the optimization parameters of their choice.\",\"PeriodicalId\":212616,\"journal\":{\"name\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2213836.2213943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

NoSQL数据库专注于大规模数据集的分析处理,提供了比普通硬件更高的可伸缩性。它们最强大的功能之一是弹性,这允许公平分配的保费和高质量的性能。然而,资源的适应性扩展和收缩过程通常涉及大量的手工工作,通常需要定义由用户提供的扩大或缩小的条件。到目前为止,还没有自动调整NoSQL集群大小的开源系统。在这个演示中,我们展示了TIRAMOLA,一个模块化的、支持云的框架,用于监控和自适应地调整NoSQL集群的大小。我们的系统包含一个决策模块,允许最佳集群调整行动,以最大化任何可量化的奖励功能,以及对工作量或基础设施变化的终身适应。听众将能够启动各种规模的HBase集群,并通过多个YCSB客户端应用不同的工作负载。与会者将能够实时观看系统自动添加和删除虚拟机,以及集群性能指标如何随他们选择的优化参数而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TIRAMOLA: elastic nosql provisioning through a cloud management platform
NoSQL databases focus on analytical processing of large scale datasets, offering increased scalability over commodity hardware. One of their strongest features is elasticity, which allows for fairly portioned premiums and high-quality performance. Yet, the process of adaptive expansion and contraction of resources usually involves a lot of manual effort, often requiring the definition of the conditions for scaling up or down to be provided by the users. To date, there exists no open-source system for automatic resizing of NoSQL clusters. In this demonstration, we present TIRAMOLA, a modular, cloud-enabled framework for monitoring and adaptively resizing NoSQL clusters. Our system incorporates a decision-making module which allows for optimal cluster resize actions in order to maximize any quantifiable reward function provided together with life-long adaptation to workload or infrastructural changes. The audience will be able to initiate HBase clusters of various sizes and apply varying workloads through multiple YCSB clients. The attendees will be able to watch, in real-time, the system perform automatic VM additions and removals as well as how cluster performance metrics change relative to the optimization parameters of their choice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信