基于机器学习算法和SMOTE方法的暗网流量分类

Hasan Karagöl, Oğuzhan Erdem, Barkin Akbas, Tuncay Soylu
{"title":"基于机器学习算法和SMOTE方法的暗网流量分类","authors":"Hasan Karagöl, Oğuzhan Erdem, Barkin Akbas, Tuncay Soylu","doi":"10.1109/UBMK55850.2022.9919462","DOIUrl":null,"url":null,"abstract":"The Darknet is a network that can be accessed with certain privileges and runs a non-standard communication protocol. The Darknet traffic that consists of data from several known networks such as Tor and the P2P is often used for criminal activities due to its anonymity. It is so critical to correctly classify Darknet traffic to differentiate the individual flows for security purposes. In this paper, we proposed three different machine learning (ML) based traffic classification approaches; the binary classification of Darknet and Benign traffic classes (Case 1); the quadruple classification of classes Tor, NonTor, VPN, and NonVpn (Case 2); an traffic classification of eight sub-traffic classes (Case 3). We further applied the SMOTE method for balancing the sizes of the classes in the traffic dataset and feature selection (FS) algorithms to identify the most effective attributes where the number of features in the original dataset were reduced from 63 to 8, 8 and 6 for Case 1, 2 and 3 respectively. For all three cases, classification was performed with six different machine learning algorithms with and without SMOTE, and the highest accuracy values were obtained with SMOTE method. The highest accuracy values were obtained with the Random Forest Algorithm as 97.22%, 97.16% and 85.99% for Case 1, 2 and 3, respectively.","PeriodicalId":417604,"journal":{"name":"2022 7th International Conference on Computer Science and Engineering (UBMK)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Darknet Traffic Classification with Machine Learning Algorithms and SMOTE Method\",\"authors\":\"Hasan Karagöl, Oğuzhan Erdem, Barkin Akbas, Tuncay Soylu\",\"doi\":\"10.1109/UBMK55850.2022.9919462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Darknet is a network that can be accessed with certain privileges and runs a non-standard communication protocol. The Darknet traffic that consists of data from several known networks such as Tor and the P2P is often used for criminal activities due to its anonymity. It is so critical to correctly classify Darknet traffic to differentiate the individual flows for security purposes. In this paper, we proposed three different machine learning (ML) based traffic classification approaches; the binary classification of Darknet and Benign traffic classes (Case 1); the quadruple classification of classes Tor, NonTor, VPN, and NonVpn (Case 2); an traffic classification of eight sub-traffic classes (Case 3). We further applied the SMOTE method for balancing the sizes of the classes in the traffic dataset and feature selection (FS) algorithms to identify the most effective attributes where the number of features in the original dataset were reduced from 63 to 8, 8 and 6 for Case 1, 2 and 3 respectively. For all three cases, classification was performed with six different machine learning algorithms with and without SMOTE, and the highest accuracy values were obtained with SMOTE method. The highest accuracy values were obtained with the Random Forest Algorithm as 97.22%, 97.16% and 85.99% for Case 1, 2 and 3, respectively.\",\"PeriodicalId\":417604,\"journal\":{\"name\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK55850.2022.9919462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK55850.2022.9919462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

暗网是一个可以使用某些特权访问并运行非标准通信协议的网络。暗网流量由Tor和P2P等几个已知网络的数据组成,由于其匿名性,经常被用于犯罪活动。正确地对暗网流量进行分类以区分各个流量对于安全是至关重要的。在本文中,我们提出了三种不同的基于机器学习的流量分类方法;暗网流量和良性流量的二元分类(案例1);Tor、NonTor、VPN和NonVpn的四重分类(案例2);我们进一步应用SMOTE方法来平衡流量数据集中类的大小和特征选择(FS)算法来识别最有效的属性,其中原始数据集中的特征数量分别从63个减少到8个、8个和6个(案例1、2和3)。对于这三种情况,使用六种不同的机器学习算法进行分类,使用SMOTE方法获得了最高的准确率值。对于Case 1、Case 2和Case 3,随机森林算法获得的准确率最高,分别为97.22%、97.16%和85.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Darknet Traffic Classification with Machine Learning Algorithms and SMOTE Method
The Darknet is a network that can be accessed with certain privileges and runs a non-standard communication protocol. The Darknet traffic that consists of data from several known networks such as Tor and the P2P is often used for criminal activities due to its anonymity. It is so critical to correctly classify Darknet traffic to differentiate the individual flows for security purposes. In this paper, we proposed three different machine learning (ML) based traffic classification approaches; the binary classification of Darknet and Benign traffic classes (Case 1); the quadruple classification of classes Tor, NonTor, VPN, and NonVpn (Case 2); an traffic classification of eight sub-traffic classes (Case 3). We further applied the SMOTE method for balancing the sizes of the classes in the traffic dataset and feature selection (FS) algorithms to identify the most effective attributes where the number of features in the original dataset were reduced from 63 to 8, 8 and 6 for Case 1, 2 and 3 respectively. For all three cases, classification was performed with six different machine learning algorithms with and without SMOTE, and the highest accuracy values were obtained with SMOTE method. The highest accuracy values were obtained with the Random Forest Algorithm as 97.22%, 97.16% and 85.99% for Case 1, 2 and 3, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信