移动社交网络中基于能量共享的内容交付

Aashish Dhungana, E. Bulut
{"title":"移动社交网络中基于能量共享的内容交付","authors":"Aashish Dhungana, E. Bulut","doi":"10.1109/WoWMoM.2019.8793005","DOIUrl":null,"url":null,"abstract":"In mobile social networks, the mobility and connectivity of nodes are often non-deterministic. Source and destination nodes may not have a meeting opportunity and the content dissemination and delivery most of the time require the cooperation of nodes. However, this causes nodes spend energy, thus, they may be reluctant to participate in the dissemination process to conserve energy. One approach to motivate user participation is to transfer energy for their service so that their potential loss is compensated. However, this makes routing problem much challenging as the source node needs to decide not only the best relay nodes but also the amount of energy transfer to them. In this paper, we study this energy sharing based content delivery problem in mobile social networks. To this end, we assume that a node is willing to carry the content as long as the energy received for this delivery lasts, after which it drops the content (i.e., time-to-live). We utilize optimal stopping theory and dynamic programming to model the content delivery problem under this energy sharing paradigm between the nodes. The simulation results show that energy sharing based content delivery can potentially increase the routing performance under certain settings.","PeriodicalId":372377,"journal":{"name":"2019 IEEE 20th International Symposium on \"A World of Wireless, Mobile and Multimedia Networks\" (WoWMoM)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Energy Sharing Based Content Delivery in Mobile Social Networks\",\"authors\":\"Aashish Dhungana, E. Bulut\",\"doi\":\"10.1109/WoWMoM.2019.8793005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In mobile social networks, the mobility and connectivity of nodes are often non-deterministic. Source and destination nodes may not have a meeting opportunity and the content dissemination and delivery most of the time require the cooperation of nodes. However, this causes nodes spend energy, thus, they may be reluctant to participate in the dissemination process to conserve energy. One approach to motivate user participation is to transfer energy for their service so that their potential loss is compensated. However, this makes routing problem much challenging as the source node needs to decide not only the best relay nodes but also the amount of energy transfer to them. In this paper, we study this energy sharing based content delivery problem in mobile social networks. To this end, we assume that a node is willing to carry the content as long as the energy received for this delivery lasts, after which it drops the content (i.e., time-to-live). We utilize optimal stopping theory and dynamic programming to model the content delivery problem under this energy sharing paradigm between the nodes. The simulation results show that energy sharing based content delivery can potentially increase the routing performance under certain settings.\",\"PeriodicalId\":372377,\"journal\":{\"name\":\"2019 IEEE 20th International Symposium on \\\"A World of Wireless, Mobile and Multimedia Networks\\\" (WoWMoM)\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 20th International Symposium on \\\"A World of Wireless, Mobile and Multimedia Networks\\\" (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM.2019.8793005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Symposium on \"A World of Wireless, Mobile and Multimedia Networks\" (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2019.8793005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在移动社交网络中,节点的移动性和连接性往往是不确定的。源节点和目的节点可能没有相遇的机会,内容的传播和交付很多时候需要节点的配合。然而,这会导致节点消耗能量,因此,它们可能不愿意参与传播过程以节省能量。激励用户参与的一种方法是为他们的服务转移能量,从而补偿他们的潜在损失。然而,这使得路由问题变得非常具有挑战性,因为源节点不仅需要决定最佳中继节点,还需要决定向它们传输的能量量。本文研究了移动社交网络中基于能量共享的内容分发问题。为此,我们假设节点愿意携带内容,只要接收到的能量持续,之后它会丢弃内容(即生存时间)。我们利用最优停止理论和动态规划对节点间能量共享范式下的内容交付问题进行建模。仿真结果表明,在一定的设置下,基于能量共享的内容分发可以潜在地提高路由性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Sharing Based Content Delivery in Mobile Social Networks
In mobile social networks, the mobility and connectivity of nodes are often non-deterministic. Source and destination nodes may not have a meeting opportunity and the content dissemination and delivery most of the time require the cooperation of nodes. However, this causes nodes spend energy, thus, they may be reluctant to participate in the dissemination process to conserve energy. One approach to motivate user participation is to transfer energy for their service so that their potential loss is compensated. However, this makes routing problem much challenging as the source node needs to decide not only the best relay nodes but also the amount of energy transfer to them. In this paper, we study this energy sharing based content delivery problem in mobile social networks. To this end, we assume that a node is willing to carry the content as long as the energy received for this delivery lasts, after which it drops the content (i.e., time-to-live). We utilize optimal stopping theory and dynamic programming to model the content delivery problem under this energy sharing paradigm between the nodes. The simulation results show that energy sharing based content delivery can potentially increase the routing performance under certain settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信