动态随机对策的马尔可夫量子响应均衡及计算和选择马尔可夫完美均衡的同伦方法

Steffen Eibelshäuser, David Poensgen
{"title":"动态随机对策的马尔可夫量子响应均衡及计算和选择马尔可夫完美均衡的同伦方法","authors":"Steffen Eibelshäuser, David Poensgen","doi":"10.2139/ssrn.3314404","DOIUrl":null,"url":null,"abstract":"We formally define Markov quantal response equilibrium (QRE) and prove existence for all finite discounted dynamic stochastic games. The special case of logit Markov QRE constitutes a mapping from precision parameter λ to sets of logit Markov QRE. The limiting points of this correspondence are shown to be Markov perfect equilibria. Furthermore, the logit Markov QRE correspondence can be given a homotopy interpretation. We prove that for all games, this homotopy contains a branch connecting the unique solution at λ = 0 to a unique limiting Markov perfect equilibrium. This result can be leveraged both for the computation of Markov perfect equilibria, and also as a selection criterion.","PeriodicalId":373527,"journal":{"name":"PSN: Game Theory (Topic)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Markov Quantal Response Equilibrium and a Homotopy Method for Computing and Selecting Markov Perfect Equilibria of Dynamic Stochastic Games\",\"authors\":\"Steffen Eibelshäuser, David Poensgen\",\"doi\":\"10.2139/ssrn.3314404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formally define Markov quantal response equilibrium (QRE) and prove existence for all finite discounted dynamic stochastic games. The special case of logit Markov QRE constitutes a mapping from precision parameter λ to sets of logit Markov QRE. The limiting points of this correspondence are shown to be Markov perfect equilibria. Furthermore, the logit Markov QRE correspondence can be given a homotopy interpretation. We prove that for all games, this homotopy contains a branch connecting the unique solution at λ = 0 to a unique limiting Markov perfect equilibrium. This result can be leveraged both for the computation of Markov perfect equilibria, and also as a selection criterion.\",\"PeriodicalId\":373527,\"journal\":{\"name\":\"PSN: Game Theory (Topic)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Game Theory (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3314404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Game Theory (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3314404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们正式定义了马尔可夫量子响应平衡(QRE),并证明了所有有限贴现动态随机对策的存在性。logit Markov QRE的特殊情况构成了从精度参数λ到logit Markov QRE集合的映射。这种对应关系的极限点被证明是马尔可夫完美平衡点。此外,可以给出logit Markov QRE对应的同伦解释。我们证明了对于所有对策,这个同伦包含一个分支,将λ = 0处的唯一解连接到唯一极限马尔可夫完美均衡。这一结果既可用于马尔可夫完美均衡的计算,也可作为一种选择准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markov Quantal Response Equilibrium and a Homotopy Method for Computing and Selecting Markov Perfect Equilibria of Dynamic Stochastic Games
We formally define Markov quantal response equilibrium (QRE) and prove existence for all finite discounted dynamic stochastic games. The special case of logit Markov QRE constitutes a mapping from precision parameter λ to sets of logit Markov QRE. The limiting points of this correspondence are shown to be Markov perfect equilibria. Furthermore, the logit Markov QRE correspondence can be given a homotopy interpretation. We prove that for all games, this homotopy contains a branch connecting the unique solution at λ = 0 to a unique limiting Markov perfect equilibrium. This result can be leveraged both for the computation of Markov perfect equilibria, and also as a selection criterion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信