具有分数阶导数元的非线性应力-应变关系

Francesco Paolo Pinnola, G. Zavarise
{"title":"具有分数阶导数元的非线性应力-应变关系","authors":"Francesco Paolo Pinnola, G. Zavarise","doi":"10.2139/ssrn.3270345","DOIUrl":null,"url":null,"abstract":"In this paper a non-linear stress-strain relation based on an integral formulation with a power-law kernel is proposed. This constitutive law is able to reproduce both the viscoelastic behavior and the inelastic irreversible phenomenon. It is shown how the proposed stress-strain law is capable to fit experimental data obtained from tensile tests on two kind of metal alloys. Such best-fitting procedure have shown the accuracy of the proposed model and its results are compared to other ones obtained with the aid of classical non-linear constitutive law.","PeriodicalId":363330,"journal":{"name":"Computation Theory eJournal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Non-Linear Stress-Strain Relation Endowed With Fractional Derivative Elements\",\"authors\":\"Francesco Paolo Pinnola, G. Zavarise\",\"doi\":\"10.2139/ssrn.3270345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a non-linear stress-strain relation based on an integral formulation with a power-law kernel is proposed. This constitutive law is able to reproduce both the viscoelastic behavior and the inelastic irreversible phenomenon. It is shown how the proposed stress-strain law is capable to fit experimental data obtained from tensile tests on two kind of metal alloys. Such best-fitting procedure have shown the accuracy of the proposed model and its results are compared to other ones obtained with the aid of classical non-linear constitutive law.\",\"PeriodicalId\":363330,\"journal\":{\"name\":\"Computation Theory eJournal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation Theory eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3270345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation Theory eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3270345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于幂律核积分公式的非线性应力-应变关系。该本构律既能再现粘弹性行为,又能再现非弹性不可逆现象。结果表明,所提出的应力-应变规律与两种金属合金的拉伸试验数据吻合良好。这种最佳拟合程序表明了所提模型的准确性,并将其结果与借助经典非线性本构律得到的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Non-Linear Stress-Strain Relation Endowed With Fractional Derivative Elements
In this paper a non-linear stress-strain relation based on an integral formulation with a power-law kernel is proposed. This constitutive law is able to reproduce both the viscoelastic behavior and the inelastic irreversible phenomenon. It is shown how the proposed stress-strain law is capable to fit experimental data obtained from tensile tests on two kind of metal alloys. Such best-fitting procedure have shown the accuracy of the proposed model and its results are compared to other ones obtained with the aid of classical non-linear constitutive law.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信