基于粘性HDP-HMM时间序列分析的多模态网络物理系统攻击检测

Andrew E. Hong, P. Malinovsky, Suresh Damodaran
{"title":"基于粘性HDP-HMM时间序列分析的多模态网络物理系统攻击检测","authors":"Andrew E. Hong, P. Malinovsky, Suresh Damodaran","doi":"10.1145/3604434","DOIUrl":null,"url":null,"abstract":"Automatic detection of the precise occurrence and duration of an attack reflected in time-series logs generated by cyber-physical systems is a challenging problem. This problem is exacerbated when performing this analysis using logs with limited system information. In a realistic scenario, multiple and differing attack methods may be employed in rapid succession. Modern or legacy systems operate in multiple modes and contain multiple devices recording a variety of continuous and categorical data streams. This work presents a non-parametric Bayesian framework that addresses these challenges using the sticky Hierarchical Dirichlet Process Hidden Markov Model (sHDP-HMM). Additionally, we explore metrics for measuring the accuracy of the detected events: their timings and durations and compares the computational efficiency of different inference implementations of the model. The efficacy of attack detection is demonstrated in two settings: an avionics testbed and a consumer robot.","PeriodicalId":202552,"journal":{"name":"Digital Threats: Research and Practice","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Attack Detection in Multimodal Cyber-Physical Systems with Sticky HDP-HMM based Time Series Analysis\",\"authors\":\"Andrew E. Hong, P. Malinovsky, Suresh Damodaran\",\"doi\":\"10.1145/3604434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection of the precise occurrence and duration of an attack reflected in time-series logs generated by cyber-physical systems is a challenging problem. This problem is exacerbated when performing this analysis using logs with limited system information. In a realistic scenario, multiple and differing attack methods may be employed in rapid succession. Modern or legacy systems operate in multiple modes and contain multiple devices recording a variety of continuous and categorical data streams. This work presents a non-parametric Bayesian framework that addresses these challenges using the sticky Hierarchical Dirichlet Process Hidden Markov Model (sHDP-HMM). Additionally, we explore metrics for measuring the accuracy of the detected events: their timings and durations and compares the computational efficiency of different inference implementations of the model. The efficacy of attack detection is demonstrated in two settings: an avionics testbed and a consumer robot.\",\"PeriodicalId\":202552,\"journal\":{\"name\":\"Digital Threats: Research and Practice\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Threats: Research and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3604434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Threats: Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3604434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动检测由网络物理系统生成的时间序列日志所反映的攻击的精确发生和持续时间是一个具有挑战性的问题。当使用具有有限系统信息的日志执行此分析时,这个问题会更加严重。在现实场景中,多种不同的攻击方法可能会快速连续使用。现代或传统系统以多种模式运行,并包含多个设备,记录各种连续和分类数据流。这项工作提出了一个非参数贝叶斯框架,该框架使用粘性分层狄利克雷过程隐马尔可夫模型(sHDP-HMM)来解决这些挑战。此外,我们还探讨了测量检测到的事件的准确性的指标:它们的时间和持续时间,并比较了模型的不同推理实现的计算效率。攻击检测的有效性在两种设置中进行了验证:航空电子试验台和消费机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Attack Detection in Multimodal Cyber-Physical Systems with Sticky HDP-HMM based Time Series Analysis
Automatic detection of the precise occurrence and duration of an attack reflected in time-series logs generated by cyber-physical systems is a challenging problem. This problem is exacerbated when performing this analysis using logs with limited system information. In a realistic scenario, multiple and differing attack methods may be employed in rapid succession. Modern or legacy systems operate in multiple modes and contain multiple devices recording a variety of continuous and categorical data streams. This work presents a non-parametric Bayesian framework that addresses these challenges using the sticky Hierarchical Dirichlet Process Hidden Markov Model (sHDP-HMM). Additionally, we explore metrics for measuring the accuracy of the detected events: their timings and durations and compares the computational efficiency of different inference implementations of the model. The efficacy of attack detection is demonstrated in two settings: an avionics testbed and a consumer robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信