基于马尔可夫链蒙特卡罗的非线性状态估计改进扩展卡尔曼粒子滤波

Hua-jian Wang
{"title":"基于马尔可夫链蒙特卡罗的非线性状态估计改进扩展卡尔曼粒子滤波","authors":"Hua-jian Wang","doi":"10.1109/URKE.2012.6319567","DOIUrl":null,"url":null,"abstract":"Considering the problem of poor tracking accuracy and particle degradation in the traditional particle filter algorithm, a new improved particle filter algorithm with the Markov chain Monte Carlo (MCMC) and extended particle filter is discussed. The algorithm uses Extend Kalman filter to generate a proposal distribution, which can integrate latest observation information to get the posterior probability distribution that is more in line with the true state. Meanwhile, the algorithm is optimized by MCMC sampling method, which makes the particles more diverse. The simulation results show that the improved extend Kalman particle filter solves particle degradation effectively and improves tracking accuracy.","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Improved Extend Kalman particle filter based on Markov chain Monte Carlo for nonlinear state estimation\",\"authors\":\"Hua-jian Wang\",\"doi\":\"10.1109/URKE.2012.6319567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the problem of poor tracking accuracy and particle degradation in the traditional particle filter algorithm, a new improved particle filter algorithm with the Markov chain Monte Carlo (MCMC) and extended particle filter is discussed. The algorithm uses Extend Kalman filter to generate a proposal distribution, which can integrate latest observation information to get the posterior probability distribution that is more in line with the true state. Meanwhile, the algorithm is optimized by MCMC sampling method, which makes the particles more diverse. The simulation results show that the improved extend Kalman particle filter solves particle degradation effectively and improves tracking accuracy.\",\"PeriodicalId\":277189,\"journal\":{\"name\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URKE.2012.6319567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对传统粒子滤波算法存在的跟踪精度差、粒子退化等问题,提出了一种基于马尔可夫链蒙特卡罗(MCMC)和扩展粒子滤波的改进粒子滤波算法。该算法采用扩展卡尔曼滤波生成建议分布,该建议分布可以整合最新的观测信息,得到更符合真实状态的后验概率分布。同时,采用MCMC采样方法对算法进行优化,使粒子更加多样化。仿真结果表明,改进的扩展卡尔曼粒子滤波有效地解决了粒子退化问题,提高了跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Extend Kalman particle filter based on Markov chain Monte Carlo for nonlinear state estimation
Considering the problem of poor tracking accuracy and particle degradation in the traditional particle filter algorithm, a new improved particle filter algorithm with the Markov chain Monte Carlo (MCMC) and extended particle filter is discussed. The algorithm uses Extend Kalman filter to generate a proposal distribution, which can integrate latest observation information to get the posterior probability distribution that is more in line with the true state. Meanwhile, the algorithm is optimized by MCMC sampling method, which makes the particles more diverse. The simulation results show that the improved extend Kalman particle filter solves particle degradation effectively and improves tracking accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信