色数在有界格数或有界交叉数图上的复杂度

W. Gasarch, N. Hayes, Anthony Ostuni, Davin Park
{"title":"色数在有界格数或有界交叉数图上的复杂度","authors":"W. Gasarch, N. Hayes, Anthony Ostuni, Davin Park","doi":"10.1145/3544979.3544987","DOIUrl":null,"url":null,"abstract":"e present a known theorem with the following authors. Part 1 was proven by Hopcroft and Tarjan [10]. Part 2 is easy. Part 3 was proven by Garey, Johnson, and Stockmeyer [6]. Part 4 was proven by Appel, Haken, and Koch [2, 3].","PeriodicalId":387985,"journal":{"name":"ACM SIGACT News","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Complexity of Chromatic Number When Restricted to graphs with Bounded Genus or Bounded Crossing Number\",\"authors\":\"W. Gasarch, N. Hayes, Anthony Ostuni, Davin Park\",\"doi\":\"10.1145/3544979.3544987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"e present a known theorem with the following authors. Part 1 was proven by Hopcroft and Tarjan [10]. Part 2 is easy. Part 3 was proven by Garey, Johnson, and Stockmeyer [6]. Part 4 was proven by Appel, Haken, and Koch [2, 3].\",\"PeriodicalId\":387985,\"journal\":{\"name\":\"ACM SIGACT News\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGACT News\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3544979.3544987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGACT News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3544979.3544987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

E与以下作者提出了一个已知定理。第1部分由Hopcroft和Tarjan[10]证明。第2部分很简单。第3部分得到了gary、Johnson和Stockmeyer的证明[6]。第4部分由Appel, Haken, and Koch证明[2,3]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Complexity of Chromatic Number When Restricted to graphs with Bounded Genus or Bounded Crossing Number
e present a known theorem with the following authors. Part 1 was proven by Hopcroft and Tarjan [10]. Part 2 is easy. Part 3 was proven by Garey, Johnson, and Stockmeyer [6]. Part 4 was proven by Appel, Haken, and Koch [2, 3].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信