基于API 579/ASME FFS和ABAQUS J积分断裂力学基础的高温高压设备应力强度计算

Jong-Il Lim, Young-Hoon Han
{"title":"基于API 579/ASME FFS和ABAQUS J积分断裂力学基础的高温高压设备应力强度计算","authors":"Jong-Il Lim, Young-Hoon Han","doi":"10.1115/pvp2019-93924","DOIUrl":null,"url":null,"abstract":"\n Fatigue sensitive pressure containing components in the oil & gas industry requires a life cycle assessment. High Pressure High Temperature (HPHT) equipment designed using API 17TR8 and ASME Section VIII Division 3 are evaluated for cyclic fatigue crack growth per API 579/ASME FFS-1 fitness for service level 3 assessment. The level 3 assessment requires more advanced stress analysis to define the state of stress at critical locations and a defined initial flaw for cycle growth assessment. The cyclic crack growth in pressure containing equipment depends on the alternating crack tip stress intensity values for the defined load histogram. Therefore, in this paper, the stress intensity at crack tip is calculated using two approaches for 20ksi pressure equipment. The first approach is to utilize linear elastic stresses obtained from a three-dimensional finite element evaluation, where the stress profiles are used as an input to Signal FFS (fitness for service) Quest software, to calculate stress intensity at crack tip. The second approach utilizes a J-integral based on fracture mechanics analysis considering a pressure penetration on cracked surfaces. Although there is a difficulty in representing the complete production load histogram applying the J-integral solution, this paper provides evaluation of the two methods for comparison of results. It also demonstrates the feasibility of application to pressure vessel equipment.","PeriodicalId":174920,"journal":{"name":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HPHT Equipment Stress Intensity Calculation Based Upon the API 579/ASME FFS and ABAQUS J Integral Fracture Mechanics Basis\",\"authors\":\"Jong-Il Lim, Young-Hoon Han\",\"doi\":\"10.1115/pvp2019-93924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Fatigue sensitive pressure containing components in the oil & gas industry requires a life cycle assessment. High Pressure High Temperature (HPHT) equipment designed using API 17TR8 and ASME Section VIII Division 3 are evaluated for cyclic fatigue crack growth per API 579/ASME FFS-1 fitness for service level 3 assessment. The level 3 assessment requires more advanced stress analysis to define the state of stress at critical locations and a defined initial flaw for cycle growth assessment. The cyclic crack growth in pressure containing equipment depends on the alternating crack tip stress intensity values for the defined load histogram. Therefore, in this paper, the stress intensity at crack tip is calculated using two approaches for 20ksi pressure equipment. The first approach is to utilize linear elastic stresses obtained from a three-dimensional finite element evaluation, where the stress profiles are used as an input to Signal FFS (fitness for service) Quest software, to calculate stress intensity at crack tip. The second approach utilizes a J-integral based on fracture mechanics analysis considering a pressure penetration on cracked surfaces. Although there is a difficulty in representing the complete production load histogram applying the J-integral solution, this paper provides evaluation of the two methods for comparison of results. It also demonstrates the feasibility of application to pressure vessel equipment.\",\"PeriodicalId\":174920,\"journal\":{\"name\":\"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/pvp2019-93924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在石油和天然气行业中,疲劳敏感压力组件需要进行生命周期评估。使用API 17TR8和ASME Section VIII Division 3设计的高压高温(HPHT)设备根据API 579/ASME FFS-1进行循环疲劳裂纹扩展评估,以进行服务等级3评估。三级评估需要更先进的应力分析,以确定关键位置的应力状态,并为循环增长评估定义初始缺陷。含压设备中的循环裂纹扩展取决于定义载荷直方图中裂纹尖端的交变应力强度值。因此,本文针对20ksi压力设备,采用两种方法计算裂纹尖端的应力强度。第一种方法是利用从三维有限元评估中获得的线弹性应力,其中应力剖面用作Signal FFS(服务适应性)Quest软件的输入,以计算裂纹尖端的应力强度。第二种方法利用基于断裂力学分析的j积分,考虑裂纹表面的压力渗透。尽管用j积分解表示完整的生产负荷直方图存在困难,但本文对两种方法进行了评价,以比较结果。论证了该方法在压力容器设备上应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HPHT Equipment Stress Intensity Calculation Based Upon the API 579/ASME FFS and ABAQUS J Integral Fracture Mechanics Basis
Fatigue sensitive pressure containing components in the oil & gas industry requires a life cycle assessment. High Pressure High Temperature (HPHT) equipment designed using API 17TR8 and ASME Section VIII Division 3 are evaluated for cyclic fatigue crack growth per API 579/ASME FFS-1 fitness for service level 3 assessment. The level 3 assessment requires more advanced stress analysis to define the state of stress at critical locations and a defined initial flaw for cycle growth assessment. The cyclic crack growth in pressure containing equipment depends on the alternating crack tip stress intensity values for the defined load histogram. Therefore, in this paper, the stress intensity at crack tip is calculated using two approaches for 20ksi pressure equipment. The first approach is to utilize linear elastic stresses obtained from a three-dimensional finite element evaluation, where the stress profiles are used as an input to Signal FFS (fitness for service) Quest software, to calculate stress intensity at crack tip. The second approach utilizes a J-integral based on fracture mechanics analysis considering a pressure penetration on cracked surfaces. Although there is a difficulty in representing the complete production load histogram applying the J-integral solution, this paper provides evaluation of the two methods for comparison of results. It also demonstrates the feasibility of application to pressure vessel equipment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信