基于骨架的动作识别的多尺度自适应图卷积网络

Yiqi Fan, Xiaojuan Wang, Tianqi Lv, Lingrui Wu
{"title":"基于骨架的动作识别的多尺度自适应图卷积网络","authors":"Yiqi Fan, Xiaojuan Wang, Tianqi Lv, Lingrui Wu","doi":"10.1109/ICCSE49874.2020.9201897","DOIUrl":null,"url":null,"abstract":"Skeleton-based action recognition is a branch of action recognition which uses dynamic skeletons as input. Recent research based on graph convolutional networks (GCN) has achieved remarkable performance in this area. However, feature extraction and fusion at different physical scales have not been well studied. To solve these issues, we propose a novel MultiScale Adaptive Graph Convolutional Network (MSGCN) which contains a Multi-Scale Graph Convolutional Module and a MultiScale Selective Fusion Module. Extensive experiments on NTU- RGBD dataset demonstrate the effectiveness of our method, our method achieved competitive performance on NTU-RGBD dataset.","PeriodicalId":350703,"journal":{"name":"2020 15th International Conference on Computer Science & Education (ICCSE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-Scale Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition\",\"authors\":\"Yiqi Fan, Xiaojuan Wang, Tianqi Lv, Lingrui Wu\",\"doi\":\"10.1109/ICCSE49874.2020.9201897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skeleton-based action recognition is a branch of action recognition which uses dynamic skeletons as input. Recent research based on graph convolutional networks (GCN) has achieved remarkable performance in this area. However, feature extraction and fusion at different physical scales have not been well studied. To solve these issues, we propose a novel MultiScale Adaptive Graph Convolutional Network (MSGCN) which contains a Multi-Scale Graph Convolutional Module and a MultiScale Selective Fusion Module. Extensive experiments on NTU- RGBD dataset demonstrate the effectiveness of our method, our method achieved competitive performance on NTU-RGBD dataset.\",\"PeriodicalId\":350703,\"journal\":{\"name\":\"2020 15th International Conference on Computer Science & Education (ICCSE)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th International Conference on Computer Science & Education (ICCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSE49874.2020.9201897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE49874.2020.9201897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于骨架的动作识别是使用动态骨架作为输入的动作识别的一个分支。近年来基于图卷积网络(GCN)的研究在该领域取得了显著的成绩。然而,不同物理尺度下的特征提取和融合尚未得到很好的研究。为了解决这些问题,我们提出了一种新的多尺度自适应图卷积网络(MSGCN),该网络包含一个多尺度图卷积模块和一个多尺度选择融合模块。在NTU-RGBD数据集上的大量实验证明了该方法的有效性,该方法在NTU-RGBD数据集上取得了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Scale Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
Skeleton-based action recognition is a branch of action recognition which uses dynamic skeletons as input. Recent research based on graph convolutional networks (GCN) has achieved remarkable performance in this area. However, feature extraction and fusion at different physical scales have not been well studied. To solve these issues, we propose a novel MultiScale Adaptive Graph Convolutional Network (MSGCN) which contains a Multi-Scale Graph Convolutional Module and a MultiScale Selective Fusion Module. Extensive experiments on NTU- RGBD dataset demonstrate the effectiveness of our method, our method achieved competitive performance on NTU-RGBD dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信