{"title":"基于fpga的线性超声电机循环小波神经网络控制系统","authors":"Ying-Chih Hung, F. Lin","doi":"10.1109/ISDA.2009.61","DOIUrl":null,"url":null,"abstract":"A field-programmable gate array (FPGA)-based recurrent wavelet neural network (RWNN) control system is proposed to control the mover position of a linear ultrasonic motor (LUSM) in this study. First, the structure and operating principles of the LUSM are introduced. Since the dynamic characteristics and motor parameters of the LUSM are nonlinear and time-varying, an RWNN controller is designed to improve the control performance for the precision tracking of various reference trajectories. The network structure and its on-line learning algorithm using delta adaptation law of the RWNN are described in detail. Moreover, an FPGA chip is adopted to implement the developed control algorithm for possible low-cost and high-performance industrial applications. Finally, the effectiveness of the proposed control system is verified by some experimental results.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"FPGA-Based Recurrent Wavelet Neural Network Control System for Linear Ultrasonic Motor\",\"authors\":\"Ying-Chih Hung, F. Lin\",\"doi\":\"10.1109/ISDA.2009.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A field-programmable gate array (FPGA)-based recurrent wavelet neural network (RWNN) control system is proposed to control the mover position of a linear ultrasonic motor (LUSM) in this study. First, the structure and operating principles of the LUSM are introduced. Since the dynamic characteristics and motor parameters of the LUSM are nonlinear and time-varying, an RWNN controller is designed to improve the control performance for the precision tracking of various reference trajectories. The network structure and its on-line learning algorithm using delta adaptation law of the RWNN are described in detail. Moreover, an FPGA chip is adopted to implement the developed control algorithm for possible low-cost and high-performance industrial applications. Finally, the effectiveness of the proposed control system is verified by some experimental results.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FPGA-Based Recurrent Wavelet Neural Network Control System for Linear Ultrasonic Motor
A field-programmable gate array (FPGA)-based recurrent wavelet neural network (RWNN) control system is proposed to control the mover position of a linear ultrasonic motor (LUSM) in this study. First, the structure and operating principles of the LUSM are introduced. Since the dynamic characteristics and motor parameters of the LUSM are nonlinear and time-varying, an RWNN controller is designed to improve the control performance for the precision tracking of various reference trajectories. The network structure and its on-line learning algorithm using delta adaptation law of the RWNN are described in detail. Moreover, an FPGA chip is adopted to implement the developed control algorithm for possible low-cost and high-performance industrial applications. Finally, the effectiveness of the proposed control system is verified by some experimental results.