魔方的变种

Mathieu Dutour Sikiri'c
{"title":"魔方的变种","authors":"Mathieu Dutour Sikiri'c","doi":"10.5592/co/ccd.2020.03","DOIUrl":null,"url":null,"abstract":"The Rubik's cube is a famous puzzle in which faces can be moved and the corresponding movement operations define a group. We consider here a generalization to any $3$-valent map. We prove an upper bound on the size of the corresponding group which we conjecture to be tight.","PeriodicalId":253304,"journal":{"name":"Proceedings of the 3rd Croatian Combinatorial Days","volume":"364 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A variation on the Rubik's cube\",\"authors\":\"Mathieu Dutour Sikiri'c\",\"doi\":\"10.5592/co/ccd.2020.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Rubik's cube is a famous puzzle in which faces can be moved and the corresponding movement operations define a group. We consider here a generalization to any $3$-valent map. We prove an upper bound on the size of the corresponding group which we conjecture to be tight.\",\"PeriodicalId\":253304,\"journal\":{\"name\":\"Proceedings of the 3rd Croatian Combinatorial Days\",\"volume\":\"364 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd Croatian Combinatorial Days\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5592/co/ccd.2020.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Croatian Combinatorial Days","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5592/co/ccd.2020.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

魔方是一种著名的益智游戏,其中的脸可以移动,相应的移动操作定义了一个组。我们在这里考虑对任何$3$价映射的泛化。我们证明了相应群的大小的上界,我们推测这个上界是紧的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variation on the Rubik's cube
The Rubik's cube is a famous puzzle in which faces can be moved and the corresponding movement operations define a group. We consider here a generalization to any $3$-valent map. We prove an upper bound on the size of the corresponding group which we conjecture to be tight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信