{"title":"厚重启动加权调和Golub-Kahan-Lanczos算法求解线性响应特征值问题","authors":"H. Zhong, Guoliang Chen","doi":"10.1553/etna_vol51s529","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a weighted harmonic Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem (LREP). Convergence properties are established for the error bounds of the approximate eigenpairs. Moreover, we consider a practical thick-restart procedure to reduce the computational and memory costs and present a weighted harmonic Golub-Kahan-Lanczos algorithm with deflated restarting. Numerical tests show the efficiency of our new algorithms.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thick restarting the weighted harmonic Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem\",\"authors\":\"H. Zhong, Guoliang Chen\",\"doi\":\"10.1553/etna_vol51s529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a weighted harmonic Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem (LREP). Convergence properties are established for the error bounds of the approximate eigenpairs. Moreover, we consider a practical thick-restart procedure to reduce the computational and memory costs and present a weighted harmonic Golub-Kahan-Lanczos algorithm with deflated restarting. Numerical tests show the efficiency of our new algorithms.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol51s529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol51s529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thick restarting the weighted harmonic Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem
In this paper, we propose a weighted harmonic Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem (LREP). Convergence properties are established for the error bounds of the approximate eigenpairs. Moreover, we consider a practical thick-restart procedure to reduce the computational and memory costs and present a weighted harmonic Golub-Kahan-Lanczos algorithm with deflated restarting. Numerical tests show the efficiency of our new algorithms.