厚重启动加权调和Golub-Kahan-Lanczos算法求解线性响应特征值问题

H. Zhong, Guoliang Chen
{"title":"厚重启动加权调和Golub-Kahan-Lanczos算法求解线性响应特征值问题","authors":"H. Zhong, Guoliang Chen","doi":"10.1553/etna_vol51s529","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a weighted harmonic Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem (LREP). Convergence properties are established for the error bounds of the approximate eigenpairs. Moreover, we consider a practical thick-restart procedure to reduce the computational and memory costs and present a weighted harmonic Golub-Kahan-Lanczos algorithm with deflated restarting. Numerical tests show the efficiency of our new algorithms.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thick restarting the weighted harmonic Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem\",\"authors\":\"H. Zhong, Guoliang Chen\",\"doi\":\"10.1553/etna_vol51s529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a weighted harmonic Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem (LREP). Convergence properties are established for the error bounds of the approximate eigenpairs. Moreover, we consider a practical thick-restart procedure to reduce the computational and memory costs and present a weighted harmonic Golub-Kahan-Lanczos algorithm with deflated restarting. Numerical tests show the efficiency of our new algorithms.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol51s529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol51s529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文针对线性响应特征值问题(LREP)提出了一种加权调和Golub-Kahan-Lanczos算法。建立了近似特征对误差界的收敛性。此外,我们考虑了一种实用的厚重启过程,以减少计算和内存开销,并提出了一种加权调和Golub-Kahan-Lanczos算法。数值实验证明了新算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thick restarting the weighted harmonic Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem
In this paper, we propose a weighted harmonic Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem (LREP). Convergence properties are established for the error bounds of the approximate eigenpairs. Moreover, we consider a practical thick-restart procedure to reduce the computational and memory costs and present a weighted harmonic Golub-Kahan-Lanczos algorithm with deflated restarting. Numerical tests show the efficiency of our new algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信