{"title":"数据驱动的随机输出反馈预测控制:通过插值初始条件的递归可行性","authors":"Guanru Pan, Ruchuan Ou, T. Faulwasser","doi":"10.48550/arXiv.2212.07661","DOIUrl":null,"url":null,"abstract":"The paper investigates data-driven output-feedback predictive control of linear systems subject to stochastic disturbances. The scheme relies on the recursive solution of a suitable data-driven reformulation of a stochastic Optimal Control Problem (OCP), which allows for forward prediction and optimization of statistical distributions of inputs and outputs. Our approach avoids the use of parametric system models. Instead it is based on previously recorded data using a recently proposed stochastic variant of Willems' fundamental lemma. The stochastic variant of the lemma is applicable to a large class of linear dynamics subject to stochastic disturbances of Gaussian and non-Gaussian nature. To ensure recursive feasibility, the initial condition of the OCP -- which consists of information about past inputs and outputs -- is considered as an extra decision variable of the OCP. We provide sufficient conditions for recursive feasibility and closed-loop practical stability of the proposed scheme as well as performance bounds. Finally, a numerical example illustrates the efficacy and closed-loop properties of the proposed scheme.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Data-driven Stochastic Output-Feedback Predictive Control: Recursive Feasibility through Interpolated Initial Conditions\",\"authors\":\"Guanru Pan, Ruchuan Ou, T. Faulwasser\",\"doi\":\"10.48550/arXiv.2212.07661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates data-driven output-feedback predictive control of linear systems subject to stochastic disturbances. The scheme relies on the recursive solution of a suitable data-driven reformulation of a stochastic Optimal Control Problem (OCP), which allows for forward prediction and optimization of statistical distributions of inputs and outputs. Our approach avoids the use of parametric system models. Instead it is based on previously recorded data using a recently proposed stochastic variant of Willems' fundamental lemma. The stochastic variant of the lemma is applicable to a large class of linear dynamics subject to stochastic disturbances of Gaussian and non-Gaussian nature. To ensure recursive feasibility, the initial condition of the OCP -- which consists of information about past inputs and outputs -- is considered as an extra decision variable of the OCP. We provide sufficient conditions for recursive feasibility and closed-loop practical stability of the proposed scheme as well as performance bounds. Finally, a numerical example illustrates the efficacy and closed-loop properties of the proposed scheme.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2212.07661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.07661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The paper investigates data-driven output-feedback predictive control of linear systems subject to stochastic disturbances. The scheme relies on the recursive solution of a suitable data-driven reformulation of a stochastic Optimal Control Problem (OCP), which allows for forward prediction and optimization of statistical distributions of inputs and outputs. Our approach avoids the use of parametric system models. Instead it is based on previously recorded data using a recently proposed stochastic variant of Willems' fundamental lemma. The stochastic variant of the lemma is applicable to a large class of linear dynamics subject to stochastic disturbances of Gaussian and non-Gaussian nature. To ensure recursive feasibility, the initial condition of the OCP -- which consists of information about past inputs and outputs -- is considered as an extra decision variable of the OCP. We provide sufficient conditions for recursive feasibility and closed-loop practical stability of the proposed scheme as well as performance bounds. Finally, a numerical example illustrates the efficacy and closed-loop properties of the proposed scheme.