一种基于误差偶矩的算法

A. Barros, J. Príncipe, Y. Takeuchi, C. H. Sales, N. Ohnishi
{"title":"一种基于误差偶矩的算法","authors":"A. Barros, J. Príncipe, Y. Takeuchi, C. H. Sales, N. Ohnishi","doi":"10.1109/NNSP.2003.1318087","DOIUrl":null,"url":null,"abstract":"We propose an algorithm based on a linear combination of the even moments of the error for adaptive filtering, called weighted even moment (WEM) algorithm. It is similar to the well-known least mean square (LMS) and to the family of algorithms proposed by Walach and Widrow (1994). This later ones were shown to behave poorer than the LMS, however, when the noise was Gaussian. We study the WEM algorithm convergence behavior and deduce equations for the misadjustment and the learning time. The results showed that the WEM had better performance than the LMS when the noise had a Gaussian distribution.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An algorithm based on the even moments of the error\",\"authors\":\"A. Barros, J. Príncipe, Y. Takeuchi, C. H. Sales, N. Ohnishi\",\"doi\":\"10.1109/NNSP.2003.1318087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an algorithm based on a linear combination of the even moments of the error for adaptive filtering, called weighted even moment (WEM) algorithm. It is similar to the well-known least mean square (LMS) and to the family of algorithms proposed by Walach and Widrow (1994). This later ones were shown to behave poorer than the LMS, however, when the noise was Gaussian. We study the WEM algorithm convergence behavior and deduce equations for the misadjustment and the learning time. The results showed that the WEM had better performance than the LMS when the noise had a Gaussian distribution.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种基于误差偶矩的线性组合进行自适应滤波的算法,称为加权偶矩(WEM)算法。它类似于众所周知的最小均方(LMS)和Walach和Widrow(1994)提出的一系列算法。然而,当噪声是高斯噪声时,后一种方法的表现不如LMS。研究了WEM算法的收敛性,推导了误差和学习时间的方程。结果表明,当噪声为高斯分布时,WEM的性能优于LMS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithm based on the even moments of the error
We propose an algorithm based on a linear combination of the even moments of the error for adaptive filtering, called weighted even moment (WEM) algorithm. It is similar to the well-known least mean square (LMS) and to the family of algorithms proposed by Walach and Widrow (1994). This later ones were shown to behave poorer than the LMS, however, when the noise was Gaussian. We study the WEM algorithm convergence behavior and deduce equations for the misadjustment and the learning time. The results showed that the WEM had better performance than the LMS when the noise had a Gaussian distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信