{"title":"非合理旋转上接近分段常数线性环的双曲性","authors":"A. Ivanov","doi":"10.1109/DD55230.2022.9960970","DOIUrl":null,"url":null,"abstract":"We study a family of skew products <tex>$\\boldsymbol{F_{A,t}=(\\sigma_{\\omega},\\ A_{t})}$</tex> over irrational rotation <tex>$\\sigma_{\\omega}(x)=x+\\omega$</tex> of a circle <tex>$\\boldsymbol{\\mathbb{T}^{1}}$</tex>, which depend on a real parameter <tex>$t$</tex>. It is supposed that the transformation <tex>$A_{t}\\in C(\\mathbb{T}^{1},\\ SL(2,\\mathbb{R}))$</tex> is of the form <tex>$A_{t}(x)=R(\\varphi(x))Z(\\lambda(x))$</tex>, where <tex>$R(\\varphi)$</tex> stands for a rotation in <tex>$\\mathbb{R}^{2}$</tex> over an angle <tex>$\\varphi$</tex> and <tex>$Z(\\lambda)=\\text{diag}\\{\\lambda,\\lambda^{-1}\\}$</tex> is a diagonal matrix. Assuming <tex>$\\lambda(x)\\geq\\lambda_{\\mathrm{O}}\\gg 1$</tex> and the function <tex>$\\varphi$</tex> to be piecewise linear such that <tex>$\\cos(x)$</tex> possesses only simple zeroes, we study the problem of uniform hyperbolicity for the cocycle generated by <tex>$\\boldsymbol{F_{A,t}}$</tex>. We apply the critical set method to formulate sufficient conditions on the parameter values which guarantee the uniform hyperbolicity of the cocycle. Application to the Schrödinger cocycles is also discussed.","PeriodicalId":125852,"journal":{"name":"2022 Days on Diffraction (DD)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On hyperbolicity of close to piecewise constant linear cocycles over irrational rotations\",\"authors\":\"A. Ivanov\",\"doi\":\"10.1109/DD55230.2022.9960970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a family of skew products <tex>$\\\\boldsymbol{F_{A,t}=(\\\\sigma_{\\\\omega},\\\\ A_{t})}$</tex> over irrational rotation <tex>$\\\\sigma_{\\\\omega}(x)=x+\\\\omega$</tex> of a circle <tex>$\\\\boldsymbol{\\\\mathbb{T}^{1}}$</tex>, which depend on a real parameter <tex>$t$</tex>. It is supposed that the transformation <tex>$A_{t}\\\\in C(\\\\mathbb{T}^{1},\\\\ SL(2,\\\\mathbb{R}))$</tex> is of the form <tex>$A_{t}(x)=R(\\\\varphi(x))Z(\\\\lambda(x))$</tex>, where <tex>$R(\\\\varphi)$</tex> stands for a rotation in <tex>$\\\\mathbb{R}^{2}$</tex> over an angle <tex>$\\\\varphi$</tex> and <tex>$Z(\\\\lambda)=\\\\text{diag}\\\\{\\\\lambda,\\\\lambda^{-1}\\\\}$</tex> is a diagonal matrix. Assuming <tex>$\\\\lambda(x)\\\\geq\\\\lambda_{\\\\mathrm{O}}\\\\gg 1$</tex> and the function <tex>$\\\\varphi$</tex> to be piecewise linear such that <tex>$\\\\cos(x)$</tex> possesses only simple zeroes, we study the problem of uniform hyperbolicity for the cocycle generated by <tex>$\\\\boldsymbol{F_{A,t}}$</tex>. We apply the critical set method to formulate sufficient conditions on the parameter values which guarantee the uniform hyperbolicity of the cocycle. Application to the Schrödinger cocycles is also discussed.\",\"PeriodicalId\":125852,\"journal\":{\"name\":\"2022 Days on Diffraction (DD)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Days on Diffraction (DD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD55230.2022.9960970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD55230.2022.9960970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On hyperbolicity of close to piecewise constant linear cocycles over irrational rotations
We study a family of skew products $\boldsymbol{F_{A,t}=(\sigma_{\omega},\ A_{t})}$ over irrational rotation $\sigma_{\omega}(x)=x+\omega$ of a circle $\boldsymbol{\mathbb{T}^{1}}$, which depend on a real parameter $t$. It is supposed that the transformation $A_{t}\in C(\mathbb{T}^{1},\ SL(2,\mathbb{R}))$ is of the form $A_{t}(x)=R(\varphi(x))Z(\lambda(x))$, where $R(\varphi)$ stands for a rotation in $\mathbb{R}^{2}$ over an angle $\varphi$ and $Z(\lambda)=\text{diag}\{\lambda,\lambda^{-1}\}$ is a diagonal matrix. Assuming $\lambda(x)\geq\lambda_{\mathrm{O}}\gg 1$ and the function $\varphi$ to be piecewise linear such that $\cos(x)$ possesses only simple zeroes, we study the problem of uniform hyperbolicity for the cocycle generated by $\boldsymbol{F_{A,t}}$. We apply the critical set method to formulate sufficient conditions on the parameter values which guarantee the uniform hyperbolicity of the cocycle. Application to the Schrödinger cocycles is also discussed.