在健康科学、数学和计算机科学中整合STEM学习

Marj Droppa, W. Lu, Shari L. Bemis, Liette B. Ocker, Mark Miller
{"title":"在健康科学、数学和计算机科学中整合STEM学习","authors":"Marj Droppa, W. Lu, Shari L. Bemis, Liette B. Ocker, Mark Miller","doi":"10.1109/ISECON.2015.7119932","DOIUrl":null,"url":null,"abstract":"In this integrated STEM learning module we developed a data collection tool and used innovative analysis methods to investigate the relationship between academic achievement and risky wellness behaviors among college students. Exploratory factor analysis (EFA) was performed using data from college students (n = 1,499) at a large north-central university. Advanced machine learning analysis techniques found a strong connection between student wellness behavior and academic achievement and that this relationship can be predicted using wellness behavior data. The real world research project in this study integrated educational activities among Mathematics, Computer Science, and Health Science creating an interdisciplinary learning experience within Science, Technology, Engineering and Mathematics (STEM).","PeriodicalId":386232,"journal":{"name":"2015 IEEE Integrated STEM Education Conference","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated STEM learning within health science, mathematics and computer science\",\"authors\":\"Marj Droppa, W. Lu, Shari L. Bemis, Liette B. Ocker, Mark Miller\",\"doi\":\"10.1109/ISECON.2015.7119932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this integrated STEM learning module we developed a data collection tool and used innovative analysis methods to investigate the relationship between academic achievement and risky wellness behaviors among college students. Exploratory factor analysis (EFA) was performed using data from college students (n = 1,499) at a large north-central university. Advanced machine learning analysis techniques found a strong connection between student wellness behavior and academic achievement and that this relationship can be predicted using wellness behavior data. The real world research project in this study integrated educational activities among Mathematics, Computer Science, and Health Science creating an interdisciplinary learning experience within Science, Technology, Engineering and Mathematics (STEM).\",\"PeriodicalId\":386232,\"journal\":{\"name\":\"2015 IEEE Integrated STEM Education Conference\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Integrated STEM Education Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISECON.2015.7119932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Integrated STEM Education Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISECON.2015.7119932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个集成的STEM学习模块中,我们开发了一个数据收集工具,并使用创新的分析方法来调查大学生学习成绩与健康风险行为之间的关系。探索性因素分析(EFA)使用来自中北部一所大型大学的大学生(n = 1499)的数据进行。先进的机器学习分析技术发现,学生的健康行为和学业成绩之间存在很强的联系,这种关系可以通过健康行为数据来预测。本研究中的现实世界研究项目整合了数学、计算机科学和健康科学的教育活动,创造了科学、技术、工程和数学(STEM)的跨学科学习体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated STEM learning within health science, mathematics and computer science
In this integrated STEM learning module we developed a data collection tool and used innovative analysis methods to investigate the relationship between academic achievement and risky wellness behaviors among college students. Exploratory factor analysis (EFA) was performed using data from college students (n = 1,499) at a large north-central university. Advanced machine learning analysis techniques found a strong connection between student wellness behavior and academic achievement and that this relationship can be predicted using wellness behavior data. The real world research project in this study integrated educational activities among Mathematics, Computer Science, and Health Science creating an interdisciplinary learning experience within Science, Technology, Engineering and Mathematics (STEM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信