解调共振技术在高速连轧同步齿轮故障诊断中的应用

Fengxing Zhou, Baokang Yan
{"title":"解调共振技术在高速连轧同步齿轮故障诊断中的应用","authors":"Fengxing Zhou, Baokang Yan","doi":"10.1109/IST.2012.6295526","DOIUrl":null,"url":null,"abstract":"Normal vibration signal of rotating machinery is low-frequency signal, yet high-frequency component would exist when having fault, especially when the fault is caused by mechanical shock. But the shock pulse is very weak compared to the low-frequency component. Demodulated resonance technique can filter the low-frequency component and keep the high-frequency component. Then generate resonance wave in which the shock pulse is amplified. The signals from the gearbox are coupled to each other which make the fault diagnosis difficult, with multiple sources decoupling technique can detect independent signal of each measuring point. First, construct relative influence coefficient of the system, and then calculate the gain matrix. Adjust the parameters of the matrix repeatedly to eliminate the impact from other points. Finally, the amplified independent shock signal is detected through which the fault can be identified. The application approves that this method is effectively in fault diagnosis and fault location.","PeriodicalId":213330,"journal":{"name":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Demodulated resonance technique in fault diagnosis of high speed line rolling-mill synchromesh gears\",\"authors\":\"Fengxing Zhou, Baokang Yan\",\"doi\":\"10.1109/IST.2012.6295526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Normal vibration signal of rotating machinery is low-frequency signal, yet high-frequency component would exist when having fault, especially when the fault is caused by mechanical shock. But the shock pulse is very weak compared to the low-frequency component. Demodulated resonance technique can filter the low-frequency component and keep the high-frequency component. Then generate resonance wave in which the shock pulse is amplified. The signals from the gearbox are coupled to each other which make the fault diagnosis difficult, with multiple sources decoupling technique can detect independent signal of each measuring point. First, construct relative influence coefficient of the system, and then calculate the gain matrix. Adjust the parameters of the matrix repeatedly to eliminate the impact from other points. Finally, the amplified independent shock signal is detected through which the fault can be identified. The application approves that this method is effectively in fault diagnosis and fault location.\",\"PeriodicalId\":213330,\"journal\":{\"name\":\"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IST.2012.6295526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2012.6295526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

旋转机械的正常振动信号是低频信号,但当发生故障时,特别是由机械冲击引起的故障时,会存在高频成分。但与低频成分相比,冲击脉冲非常微弱。解调共振技术可以滤除低频分量,保留高频分量。然后产生共振波,其中冲击脉冲被放大。齿轮箱的信号相互耦合,给故障诊断带来困难,采用多源解耦技术可以检测到各测点的独立信号。首先构造系统的相对影响系数,然后计算增益矩阵。反复调整矩阵参数,消除其他点的冲击。最后,检测到放大后的独立冲击信号,通过该信号可以识别故障。应用表明,该方法能有效地进行故障诊断和定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demodulated resonance technique in fault diagnosis of high speed line rolling-mill synchromesh gears
Normal vibration signal of rotating machinery is low-frequency signal, yet high-frequency component would exist when having fault, especially when the fault is caused by mechanical shock. But the shock pulse is very weak compared to the low-frequency component. Demodulated resonance technique can filter the low-frequency component and keep the high-frequency component. Then generate resonance wave in which the shock pulse is amplified. The signals from the gearbox are coupled to each other which make the fault diagnosis difficult, with multiple sources decoupling technique can detect independent signal of each measuring point. First, construct relative influence coefficient of the system, and then calculate the gain matrix. Adjust the parameters of the matrix repeatedly to eliminate the impact from other points. Finally, the amplified independent shock signal is detected through which the fault can be identified. The application approves that this method is effectively in fault diagnosis and fault location.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信