无人机故障安全导航的自适应三维人工势场

B. Lindqvist, Jakub Haluška, C. Kanellakis, G. Nikolakopoulos
{"title":"无人机故障安全导航的自适应三维人工势场","authors":"B. Lindqvist, Jakub Haluška, C. Kanellakis, G. Nikolakopoulos","doi":"10.1109/MED54222.2022.9837223","DOIUrl":null,"url":null,"abstract":"This article presents an obstacle avoidance framework for unmanned aerial vehicles (UAVs), with a focus on providing safe and stable local navigation in critical scenarios. The framework is based on enhanced artificial potential field (APF) concepts, and is paired with a nonlinear model predictive controller (NMPC) for complete local reactive navigation. This paper will consider a series of additions to the classical artificial potential field that addresses UAV-specific challenges, allows for smooth navigation in tightly constrained environments, and ensures safe human-robot interactions. The APF formulation is fundamentally based on using raw LiDAR pointcloud data as input to decouple the safe robot navigation problem from the reliance on any map or obstacle detection software, resulting in a very resilient and fail-safe framework that can be used as an additional safety layer for any 3D-LiDAR equipped UAV in any environment or mission scenario. We evaluate the scheme in both laboratory experiments and field trials, and also place a large emphasis on realistic scenarios for safe human-robot interactions.","PeriodicalId":354557,"journal":{"name":"2022 30th Mediterranean Conference on Control and Automation (MED)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Adaptive 3D Artificial Potential Field for Fail-safe UAV Navigation\",\"authors\":\"B. Lindqvist, Jakub Haluška, C. Kanellakis, G. Nikolakopoulos\",\"doi\":\"10.1109/MED54222.2022.9837223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an obstacle avoidance framework for unmanned aerial vehicles (UAVs), with a focus on providing safe and stable local navigation in critical scenarios. The framework is based on enhanced artificial potential field (APF) concepts, and is paired with a nonlinear model predictive controller (NMPC) for complete local reactive navigation. This paper will consider a series of additions to the classical artificial potential field that addresses UAV-specific challenges, allows for smooth navigation in tightly constrained environments, and ensures safe human-robot interactions. The APF formulation is fundamentally based on using raw LiDAR pointcloud data as input to decouple the safe robot navigation problem from the reliance on any map or obstacle detection software, resulting in a very resilient and fail-safe framework that can be used as an additional safety layer for any 3D-LiDAR equipped UAV in any environment or mission scenario. We evaluate the scheme in both laboratory experiments and field trials, and also place a large emphasis on realistic scenarios for safe human-robot interactions.\",\"PeriodicalId\":354557,\"journal\":{\"name\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED54222.2022.9837223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED54222.2022.9837223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种无人机避障框架,重点研究了在关键场景下提供安全稳定的局部导航。该框架基于增强型人工势场(APF)概念,并与非线性模型预测控制器(NMPC)配对,用于完全的局部无功导航。本文将考虑对经典人工势场的一系列补充,以解决无人机特有的挑战,允许在严格受限的环境中顺利导航,并确保安全的人机交互。APF配方基本上是基于使用原始激光雷达点云数据作为输入,将安全机器人导航问题从对任何地图或障碍物检测软件的依赖中分离出来,从而形成一个非常有弹性和故障安全的框架,可作为任何3D-LiDAR装备的无人机在任何环境或任务场景中的额外安全层。我们在实验室实验和现场试验中评估了该方案,并强调了安全人机交互的现实场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive 3D Artificial Potential Field for Fail-safe UAV Navigation
This article presents an obstacle avoidance framework for unmanned aerial vehicles (UAVs), with a focus on providing safe and stable local navigation in critical scenarios. The framework is based on enhanced artificial potential field (APF) concepts, and is paired with a nonlinear model predictive controller (NMPC) for complete local reactive navigation. This paper will consider a series of additions to the classical artificial potential field that addresses UAV-specific challenges, allows for smooth navigation in tightly constrained environments, and ensures safe human-robot interactions. The APF formulation is fundamentally based on using raw LiDAR pointcloud data as input to decouple the safe robot navigation problem from the reliance on any map or obstacle detection software, resulting in a very resilient and fail-safe framework that can be used as an additional safety layer for any 3D-LiDAR equipped UAV in any environment or mission scenario. We evaluate the scheme in both laboratory experiments and field trials, and also place a large emphasis on realistic scenarios for safe human-robot interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信