用于Takagi-Sugeno模糊模型识别的新联合模糊c均值算法

Bouzbida Mohamed, Troudi Ahmed, Hassine Lassad, Chaari Abdelkader
{"title":"用于Takagi-Sugeno模糊模型识别的新联合模糊c均值算法","authors":"Bouzbida Mohamed, Troudi Ahmed, Hassine Lassad, Chaari Abdelkader","doi":"10.1109/ICEESA.2013.6578392","DOIUrl":null,"url":null,"abstract":"Takagi-Sugeno (TS) fuzzy model have received particular attention in the area of nonlinear identification due to their potentialities to approximate any nonlinear behavior [1]. In literature, several fuzzy clustering algorithms have been proposed to identify the parameters involved in the Takagi-Sugeno fuzzy model, as the Fuzzy C-Means algorithm (FCM) and the Allied Fuzzy C-Means algorithm (AFCM). This paper presents the New Allied Fuzzy C-Means algorithm (NAFCM) extension of the AFCM algorithm. Then an optimization method using the Particle Swarm Optimization method (PSO) combined with the NAFCM algorithm is presented in this paper (NAFCM-PSO algorithm). The simulation's results on a nonlinear system shows that the New Allied Fuzzy C-Means algorithm combined with the PSO algorithm gives results more effective and robust than the Allied Fuzzy C-Means algorithm.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"New Allied Fuzzy C-Means algorithm for Takagi-Sugeno fuzzy model identification\",\"authors\":\"Bouzbida Mohamed, Troudi Ahmed, Hassine Lassad, Chaari Abdelkader\",\"doi\":\"10.1109/ICEESA.2013.6578392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Takagi-Sugeno (TS) fuzzy model have received particular attention in the area of nonlinear identification due to their potentialities to approximate any nonlinear behavior [1]. In literature, several fuzzy clustering algorithms have been proposed to identify the parameters involved in the Takagi-Sugeno fuzzy model, as the Fuzzy C-Means algorithm (FCM) and the Allied Fuzzy C-Means algorithm (AFCM). This paper presents the New Allied Fuzzy C-Means algorithm (NAFCM) extension of the AFCM algorithm. Then an optimization method using the Particle Swarm Optimization method (PSO) combined with the NAFCM algorithm is presented in this paper (NAFCM-PSO algorithm). The simulation's results on a nonlinear system shows that the New Allied Fuzzy C-Means algorithm combined with the PSO algorithm gives results more effective and robust than the Allied Fuzzy C-Means algorithm.\",\"PeriodicalId\":212631,\"journal\":{\"name\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEESA.2013.6578392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Takagi-Sugeno (TS)模糊模型由于具有近似任何非线性行为的潜力而在非线性识别领域受到特别关注[1]。在文献中,已经提出了几种模糊聚类算法来识别Takagi-Sugeno模糊模型中涉及的参数,如模糊C-Means算法(FCM)和Allied fuzzy C-Means算法(AFCM)。本文提出了一种新的联合模糊c均值算法(NAFCM),是对AFCM算法的扩展。在此基础上,提出了一种将粒子群优化方法(PSO)与NAFCM算法相结合的优化方法(NAFCM-PSO算法)。在一个非线性系统上的仿真结果表明,新型联合模糊c -均值算法与粒子群算法相结合的结果比联合模糊c -均值算法更有效,鲁棒性更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Allied Fuzzy C-Means algorithm for Takagi-Sugeno fuzzy model identification
Takagi-Sugeno (TS) fuzzy model have received particular attention in the area of nonlinear identification due to their potentialities to approximate any nonlinear behavior [1]. In literature, several fuzzy clustering algorithms have been proposed to identify the parameters involved in the Takagi-Sugeno fuzzy model, as the Fuzzy C-Means algorithm (FCM) and the Allied Fuzzy C-Means algorithm (AFCM). This paper presents the New Allied Fuzzy C-Means algorithm (NAFCM) extension of the AFCM algorithm. Then an optimization method using the Particle Swarm Optimization method (PSO) combined with the NAFCM algorithm is presented in this paper (NAFCM-PSO algorithm). The simulation's results on a nonlinear system shows that the New Allied Fuzzy C-Means algorithm combined with the PSO algorithm gives results more effective and robust than the Allied Fuzzy C-Means algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信