基于TransUNet的城市景观跨域语义分割

Wei Yuen Teh, I. K. T. Tan
{"title":"基于TransUNet的城市景观跨域语义分割","authors":"Wei Yuen Teh, I. K. T. Tan","doi":"10.1109/ISPACS57703.2022.10082854","DOIUrl":null,"url":null,"abstract":"TransUNet is a hybrid architecture that combines a transformer-based encoder with a CNN-based UNet. Originally introduced for semantic segmentation of medical images, we show in our work that TransUNet can be successfully applied to urban scenery datasets commonly used for developing autonomous driving systems. We also explore the performance characteristics of training on multi-domain data from the real world and a simulator, and show that using simulated images to augment a live dataset can improve segmentation performance. Code will be made available at https://github.com/weiyuen.","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TransUNet for Cross-Domain Semantic Segmentation of Urban Scenery\",\"authors\":\"Wei Yuen Teh, I. K. T. Tan\",\"doi\":\"10.1109/ISPACS57703.2022.10082854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TransUNet is a hybrid architecture that combines a transformer-based encoder with a CNN-based UNet. Originally introduced for semantic segmentation of medical images, we show in our work that TransUNet can be successfully applied to urban scenery datasets commonly used for developing autonomous driving systems. We also explore the performance characteristics of training on multi-domain data from the real world and a simulator, and show that using simulated images to augment a live dataset can improve segmentation performance. Code will be made available at https://github.com/weiyuen.\",\"PeriodicalId\":410603,\"journal\":{\"name\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS57703.2022.10082854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

TransUNet是一种混合架构,结合了基于变压器的编码器和基于cnn的UNet。TransUNet最初是为医学图像的语义分割而引入的,我们在工作中表明,TransUNet可以成功地应用于通常用于开发自动驾驶系统的城市风景数据集。我们还探讨了来自真实世界和模拟器的多域数据训练的性能特征,并表明使用模拟图像来增强实时数据集可以提高分割性能。代码将在https://github.com/weiyuen上提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TransUNet for Cross-Domain Semantic Segmentation of Urban Scenery
TransUNet is a hybrid architecture that combines a transformer-based encoder with a CNN-based UNet. Originally introduced for semantic segmentation of medical images, we show in our work that TransUNet can be successfully applied to urban scenery datasets commonly used for developing autonomous driving systems. We also explore the performance characteristics of training on multi-domain data from the real world and a simulator, and show that using simulated images to augment a live dataset can improve segmentation performance. Code will be made available at https://github.com/weiyuen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信