递归随机逼近算法中实际增益序列选择的形式化分析

Qi Wang
{"title":"递归随机逼近算法中实际增益序列选择的形式化分析","authors":"Qi Wang","doi":"10.1109/CISS.2013.6552320","DOIUrl":null,"url":null,"abstract":"For many popular stochastic approximation algorithms, such as simultaneous perturbation stochastic approximation method and stochastic gradient method, the practical gain sequence selections are different from the optimal selection, which is theoretically derived from asymptotically performance. We provide formal justification for the reasons why we choose such gain sequence in practice.","PeriodicalId":268095,"journal":{"name":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","volume":"602 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formal analysis for practical gain sequence selection in recursive stochastic approximation algorithms\",\"authors\":\"Qi Wang\",\"doi\":\"10.1109/CISS.2013.6552320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many popular stochastic approximation algorithms, such as simultaneous perturbation stochastic approximation method and stochastic gradient method, the practical gain sequence selections are different from the optimal selection, which is theoretically derived from asymptotically performance. We provide formal justification for the reasons why we choose such gain sequence in practice.\",\"PeriodicalId\":268095,\"journal\":{\"name\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"602 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2013.6552320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2013.6552320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于许多流行的随机逼近算法,如同步摄动随机逼近法和随机梯度法,实际增益序列的选择与最优选择是不同的,最优选择在理论上是由渐近性能推导出来的。我们提供了在实践中选择这种增益序列的正式理由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formal analysis for practical gain sequence selection in recursive stochastic approximation algorithms
For many popular stochastic approximation algorithms, such as simultaneous perturbation stochastic approximation method and stochastic gradient method, the practical gain sequence selections are different from the optimal selection, which is theoretically derived from asymptotically performance. We provide formal justification for the reasons why we choose such gain sequence in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信