resnet50和inceptionv3深度迁移学习模型在乳腺癌热图数据集上的性能比较

D. Tiwari, M. Dixit, Kamlesh Gupta
{"title":"resnet50和inceptionv3深度迁移学习模型在乳腺癌热图数据集上的性能比较","authors":"D. Tiwari, M. Dixit, Kamlesh Gupta","doi":"10.51767/jc1301","DOIUrl":null,"url":null,"abstract":"This paper simply illustrates a performance comparison of two generally used and efficient deep transfer learning architectures like Resnet50 and InceptionV3. The Resnet50 and IncetionV3 deep transfer learning models are trained and evaluated on the Infrared thermo-gram breast cancer dataset. In this study, both these models are trained as well as fine-tuned for the correct classification of breast cancer from the breast thermo-gram images. The Resnet50 model simply outperforms the InceptionV3 model by achieving an accuracy of more than 85 %.","PeriodicalId":408370,"journal":{"name":"BSSS Journal of Computer","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PERFORMANCE COMPARISON OF THE RESNET50 AND INCEPTIONV3 DEEP TRANSFER LEARNING MODELS OVER THE BREAST CANCER THERMOS GRAM DATASET\",\"authors\":\"D. Tiwari, M. Dixit, Kamlesh Gupta\",\"doi\":\"10.51767/jc1301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper simply illustrates a performance comparison of two generally used and efficient deep transfer learning architectures like Resnet50 and InceptionV3. The Resnet50 and IncetionV3 deep transfer learning models are trained and evaluated on the Infrared thermo-gram breast cancer dataset. In this study, both these models are trained as well as fine-tuned for the correct classification of breast cancer from the breast thermo-gram images. The Resnet50 model simply outperforms the InceptionV3 model by achieving an accuracy of more than 85 %.\",\"PeriodicalId\":408370,\"journal\":{\"name\":\"BSSS Journal of Computer\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BSSS Journal of Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51767/jc1301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BSSS Journal of Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51767/jc1301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文简单地说明了两种常用的高效深度迁移学习架构(如Resnet50和InceptionV3)的性能比较。在乳腺癌红外热成像数据集上对Resnet50和IncetionV3深度迁移学习模型进行了训练和评估。在这项研究中,这两种模型都经过训练和微调,以便从乳房热成像图像中正确分类乳腺癌。Resnet50模型通过实现超过85%的准确率,简单地优于InceptionV3模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERFORMANCE COMPARISON OF THE RESNET50 AND INCEPTIONV3 DEEP TRANSFER LEARNING MODELS OVER THE BREAST CANCER THERMOS GRAM DATASET
This paper simply illustrates a performance comparison of two generally used and efficient deep transfer learning architectures like Resnet50 and InceptionV3. The Resnet50 and IncetionV3 deep transfer learning models are trained and evaluated on the Infrared thermo-gram breast cancer dataset. In this study, both these models are trained as well as fine-tuned for the correct classification of breast cancer from the breast thermo-gram images. The Resnet50 model simply outperforms the InceptionV3 model by achieving an accuracy of more than 85 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信