T. Anderson判别函数的逼近与类后验概率的估计。逼近法的收敛性

V. Zenkov
{"title":"T. Anderson判别函数的逼近与类后验概率的估计。逼近法的收敛性","authors":"V. Zenkov","doi":"10.1109/MLSD.2018.8551879","DOIUrl":null,"url":null,"abstract":"Discriminant function in T. Anderson’s definition is a function of regression in feature space. The training set in supervised learning is converted into a set of regression analysis by replacing class numbers with the differences of the corresponding costs of classification errors. The posterior probabilities of classes at points on the boundary between them depend only on the costs of classification errors. This is the basis for the method of obtaining estimates of a posterior probability of classes. It does not require adaptations to discriminant functions such as, for example, the Platt’s calibrator. For the heuristic method of approximation of the discriminant function in the range of zero values, the convergence conditions of the algorithm are obtained with increasing the volume of the training set and the length of the iterative process.","PeriodicalId":158352,"journal":{"name":"2018 Eleventh International Conference \"Management of large-scale system development\" (MLSD","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of the T. Anderson’s Discriminant Function and Estimation of the Posterior Probabilities of Classes. Convergence of the Approximation Method\",\"authors\":\"V. Zenkov\",\"doi\":\"10.1109/MLSD.2018.8551879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discriminant function in T. Anderson’s definition is a function of regression in feature space. The training set in supervised learning is converted into a set of regression analysis by replacing class numbers with the differences of the corresponding costs of classification errors. The posterior probabilities of classes at points on the boundary between them depend only on the costs of classification errors. This is the basis for the method of obtaining estimates of a posterior probability of classes. It does not require adaptations to discriminant functions such as, for example, the Platt’s calibrator. For the heuristic method of approximation of the discriminant function in the range of zero values, the convergence conditions of the algorithm are obtained with increasing the volume of the training set and the length of the iterative process.\",\"PeriodicalId\":158352,\"journal\":{\"name\":\"2018 Eleventh International Conference \\\"Management of large-scale system development\\\" (MLSD\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Eleventh International Conference \\\"Management of large-scale system development\\\" (MLSD\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSD.2018.8551879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eleventh International Conference \"Management of large-scale system development\" (MLSD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSD.2018.8551879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

判别函数在T. Anderson的定义中是特征空间中的回归函数。将监督学习中的训练集转换为回归分析的集合,方法是用相应分类错误代价的差值代替类数。在它们之间的边界点上的类的后验概率只取决于分类错误的代价。这是获得类的后验概率估计方法的基础。它不需要适应诸如普拉特校准器之类的判别函数。对于判别函数在零值范围内逼近的启发式方法,随着训练集的体积和迭代过程的长度的增加,得到了算法的收敛条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of the T. Anderson’s Discriminant Function and Estimation of the Posterior Probabilities of Classes. Convergence of the Approximation Method
Discriminant function in T. Anderson’s definition is a function of regression in feature space. The training set in supervised learning is converted into a set of regression analysis by replacing class numbers with the differences of the corresponding costs of classification errors. The posterior probabilities of classes at points on the boundary between them depend only on the costs of classification errors. This is the basis for the method of obtaining estimates of a posterior probability of classes. It does not require adaptations to discriminant functions such as, for example, the Platt’s calibrator. For the heuristic method of approximation of the discriminant function in the range of zero values, the convergence conditions of the algorithm are obtained with increasing the volume of the training set and the length of the iterative process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信