零因子交换环上乘法理想理论的推广

Ryuki Matsuda
{"title":"零因子交换环上乘法理想理论的推广","authors":"Ryuki Matsuda","doi":"10.5036/BFSIU1968.17.49","DOIUrl":null,"url":null,"abstract":"Multiplicative ideal theory has at first been developed for (commutative) integral domains. We concern here generalizations of the theory to (commutative) rings with zerodivisors. At first, Manis [50] defined a valuation for a commutative ring with zerodivisors, and generalized basic properties of a valuation on a domain(1). Using the results of Manis, Griffin [35] extended the notion of prufer domain for commutative rings with zerodivisors, and extended conditions under which a ring is a prufer ring. And Larsen generalized the notion and properties of almost Dedekind domain for rings with zerodivisors [46], generalized primary ideal structure of a prufer domain for a ring with zerodivisors. Also he extended the notion of finite character and characterizations of a prufer domain with finite character for a ring with zerodivisors [47]. Next Hinkle-Huckaba [38] defined a Kronecker function ring for a ring with zerodivisors and generalized a property of a Kronecker function domain(2). Besides, Kennedy [43] extended the notion of Krull domain for a ring with zerodivisors and generalized some properties of a Krull domain for a ring with zerodivisors(3). Here we generalize all of multiplicative ideal theory for a ring with zerodivisors. The subjects remaining for generalizations are as follows: 1. We know by Griffin [32] the extension of conditions of a prufer domain to a prufer *-multiplication domain, and a relationship between a prufer v-multiplication domain and a domain of Krull type.","PeriodicalId":141145,"journal":{"name":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Generalizations of Multiplicative Ideal Theory to Commutative Rings with Zerodivisors\",\"authors\":\"Ryuki Matsuda\",\"doi\":\"10.5036/BFSIU1968.17.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiplicative ideal theory has at first been developed for (commutative) integral domains. We concern here generalizations of the theory to (commutative) rings with zerodivisors. At first, Manis [50] defined a valuation for a commutative ring with zerodivisors, and generalized basic properties of a valuation on a domain(1). Using the results of Manis, Griffin [35] extended the notion of prufer domain for commutative rings with zerodivisors, and extended conditions under which a ring is a prufer ring. And Larsen generalized the notion and properties of almost Dedekind domain for rings with zerodivisors [46], generalized primary ideal structure of a prufer domain for a ring with zerodivisors. Also he extended the notion of finite character and characterizations of a prufer domain with finite character for a ring with zerodivisors [47]. Next Hinkle-Huckaba [38] defined a Kronecker function ring for a ring with zerodivisors and generalized a property of a Kronecker function domain(2). Besides, Kennedy [43] extended the notion of Krull domain for a ring with zerodivisors and generalized some properties of a Krull domain for a ring with zerodivisors(3). Here we generalize all of multiplicative ideal theory for a ring with zerodivisors. The subjects remaining for generalizations are as follows: 1. We know by Griffin [32] the extension of conditions of a prufer domain to a prufer *-multiplication domain, and a relationship between a prufer v-multiplication domain and a domain of Krull type.\",\"PeriodicalId\":141145,\"journal\":{\"name\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/BFSIU1968.17.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/BFSIU1968.17.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

乘法理想理论最初是针对(可交换)积分域发展起来的。这里我们关注的是将该理论推广到具有零因子的(交换)环。首先,Manis[50]定义了具有零因子的可交换环的赋值,并在定域(1)上推广了赋值的基本性质。Griffin[35]利用Manis的结果,推广了具有零因子的交换环的prufer域的概念,并推广了环是prufer环的条件。Larsen推广了零因子环的几乎Dedekind定义域的概念和性质[46],推广了零因子环的prufer定义域的初等理想结构。此外,他还推广了有限字符的概念,并对具有零因子的环给出了有限字符的整数域的刻画[47]。接着,Hinkle-Huckaba[38]对零因子环定义了Kronecker函数环,并推广了Kronecker函数域的一个性质(2)。此外,Kennedy[43]推广了零因子环的Krull定义域的概念,并推广了零因子环的Krull定义域的一些性质(3)。本文推广了零因子环的所有乘法理想理论。剩下可以概括的主题有:1。我们知道Griffin[32]将prufer域的条件扩展到prufer *-乘法域,以及prufer v-乘法域与Krull型域之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalizations of Multiplicative Ideal Theory to Commutative Rings with Zerodivisors
Multiplicative ideal theory has at first been developed for (commutative) integral domains. We concern here generalizations of the theory to (commutative) rings with zerodivisors. At first, Manis [50] defined a valuation for a commutative ring with zerodivisors, and generalized basic properties of a valuation on a domain(1). Using the results of Manis, Griffin [35] extended the notion of prufer domain for commutative rings with zerodivisors, and extended conditions under which a ring is a prufer ring. And Larsen generalized the notion and properties of almost Dedekind domain for rings with zerodivisors [46], generalized primary ideal structure of a prufer domain for a ring with zerodivisors. Also he extended the notion of finite character and characterizations of a prufer domain with finite character for a ring with zerodivisors [47]. Next Hinkle-Huckaba [38] defined a Kronecker function ring for a ring with zerodivisors and generalized a property of a Kronecker function domain(2). Besides, Kennedy [43] extended the notion of Krull domain for a ring with zerodivisors and generalized some properties of a Krull domain for a ring with zerodivisors(3). Here we generalize all of multiplicative ideal theory for a ring with zerodivisors. The subjects remaining for generalizations are as follows: 1. We know by Griffin [32] the extension of conditions of a prufer domain to a prufer *-multiplication domain, and a relationship between a prufer v-multiplication domain and a domain of Krull type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信