用delta-m近似和伽辽金正交法数值处理辐射传输中的高度前向散射

H. Fujii, G. Chiba, Yukio Yamada, Y. Hoshi, K. Kobayashi, Masao Watanabe
{"title":"用delta-m近似和伽辽金正交法数值处理辐射传输中的高度前向散射","authors":"H. Fujii, G. Chiba, Yukio Yamada, Y. Hoshi, K. Kobayashi, Masao Watanabe","doi":"10.1615/RAD-19.320","DOIUrl":null,"url":null,"abstract":"We examined influences of the highly forward scattering on photon transport and numerical treatments of the highly forward-peaked phase function in the scattering integral of the radiative transfer equation (RTE) using the delta-M approximation (dMA) and Galerkin quadrature method with various kinds of quadrature sets. Numerical investigations showed that the first order dMA with the 6-th order level symmetric even quadrature set provided the most accurate and efficient results of the RTE-calculations at a short source-detector distance of ρ ≤ 10/ μ't with the reduced transport coefficient of μ't, where the highly forward scattering strongly influences photon transport. At a long distance of ρ ≥ 10/ μ't, meanwhile, the zeroth order dMA is sufficient for the accurate and efficient results, meaning that isotropic scattering approximation holds. On the other hand, the Galerkin method provided accurate results for the RTE-calculations in highly forward scattering almost regardless of the quadrature sets.","PeriodicalId":413005,"journal":{"name":"Proceeding of Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"NUMERICAL TREATMENT OF HIGHLY FORWARD SCATTERING ON RADIATIVE TRANSFER USING THE DELTA-M APPROXIMATION AND GALERKIN QUADRATURE METHOD\",\"authors\":\"H. Fujii, G. Chiba, Yukio Yamada, Y. Hoshi, K. Kobayashi, Masao Watanabe\",\"doi\":\"10.1615/RAD-19.320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examined influences of the highly forward scattering on photon transport and numerical treatments of the highly forward-peaked phase function in the scattering integral of the radiative transfer equation (RTE) using the delta-M approximation (dMA) and Galerkin quadrature method with various kinds of quadrature sets. Numerical investigations showed that the first order dMA with the 6-th order level symmetric even quadrature set provided the most accurate and efficient results of the RTE-calculations at a short source-detector distance of ρ ≤ 10/ μ't with the reduced transport coefficient of μ't, where the highly forward scattering strongly influences photon transport. At a long distance of ρ ≥ 10/ μ't, meanwhile, the zeroth order dMA is sufficient for the accurate and efficient results, meaning that isotropic scattering approximation holds. On the other hand, the Galerkin method provided accurate results for the RTE-calculations in highly forward scattering almost regardless of the quadrature sets.\",\"PeriodicalId\":413005,\"journal\":{\"name\":\"Proceeding of Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/RAD-19.320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/RAD-19.320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了高前向散射对光子输运的影响以及辐射传递方程(RTE)散射积分中高前向峰相函数的数值处理,采用了delta-M近似(dMA)和Galerkin正交法。数值研究表明,当源-探测器距离ρ≤10/ μ't且输运系数降低为μ't时,具有6阶对称偶正交集的一阶dMA能提供最准确和有效的rte计算结果,其中高度正向散射强烈影响光子输运。同时,在ρ≥10/ μ t的长距离下,零阶dMA足以得到准确有效的结果,这意味着各向同性散射近似成立。另一方面,Galerkin方法在高度前向散射下几乎不考虑正交集的rte计算中提供了准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUMERICAL TREATMENT OF HIGHLY FORWARD SCATTERING ON RADIATIVE TRANSFER USING THE DELTA-M APPROXIMATION AND GALERKIN QUADRATURE METHOD
We examined influences of the highly forward scattering on photon transport and numerical treatments of the highly forward-peaked phase function in the scattering integral of the radiative transfer equation (RTE) using the delta-M approximation (dMA) and Galerkin quadrature method with various kinds of quadrature sets. Numerical investigations showed that the first order dMA with the 6-th order level symmetric even quadrature set provided the most accurate and efficient results of the RTE-calculations at a short source-detector distance of ρ ≤ 10/ μ't with the reduced transport coefficient of μ't, where the highly forward scattering strongly influences photon transport. At a long distance of ρ ≥ 10/ μ't, meanwhile, the zeroth order dMA is sufficient for the accurate and efficient results, meaning that isotropic scattering approximation holds. On the other hand, the Galerkin method provided accurate results for the RTE-calculations in highly forward scattering almost regardless of the quadrature sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信