时钟门控效率及其对合成流程中功率优化的影响

Yassine Attaoui, Mohamed Chentouf, Zine El Abidine Alaoui Ismaili, A. E. Mourabit
{"title":"时钟门控效率及其对合成流程中功率优化的影响","authors":"Yassine Attaoui, Mohamed Chentouf, Zine El Abidine Alaoui Ismaili, A. E. Mourabit","doi":"10.1109/ICM52667.2021.9664896","DOIUrl":null,"url":null,"abstract":"Nowadays, power optimization has become an important factor in VLSI design and various low power optimization techniques are being developed. Clock-Gating is considered one of the widely used techniques in VLSI power optimization. Gating the Clock path results in saving power by reducing wasted capacitances switching due to unnecessary activity in logic module paths, thus resulting in more wasted Switching power. Clock gating is not always beneficial, it presents some pitfalls and fallacies within its implementation in various VLSI designs, as well as it doesn't suit all kinds of VLSI logic circuits. In this paper, we measure the impact of the Clock-Gating technique on power as well as on design's performance. We have performed two separate trials, using 112 industrial designs from different technologies, the former trial enables Clock Gate insertion, and the latter does not insert Clock Gate cells in the design's circuitry. We intend to measure the impact of Clock Gating on power by measuring the Power variation and comparing metrics such Instance number Buffer & Inverter, Combinational blocks as well as QoR metrics such Runtime, wire-length, TNS, and Area. Results of this experiment showed that design circuits having Memories (SRAM, DFF, FIFO…) as dominant RTL modules, have the most impact on power when CG cells are inserted. Vice-versa power is less impacted by CG cells insertion for designs that contain microprocessors and Datapath blocks as dominant RTL instances.","PeriodicalId":212613,"journal":{"name":"2021 International Conference on Microelectronics (ICM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clock Gating Efficiency and Impact on Power Optimization During Synthesis Flow\",\"authors\":\"Yassine Attaoui, Mohamed Chentouf, Zine El Abidine Alaoui Ismaili, A. E. Mourabit\",\"doi\":\"10.1109/ICM52667.2021.9664896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, power optimization has become an important factor in VLSI design and various low power optimization techniques are being developed. Clock-Gating is considered one of the widely used techniques in VLSI power optimization. Gating the Clock path results in saving power by reducing wasted capacitances switching due to unnecessary activity in logic module paths, thus resulting in more wasted Switching power. Clock gating is not always beneficial, it presents some pitfalls and fallacies within its implementation in various VLSI designs, as well as it doesn't suit all kinds of VLSI logic circuits. In this paper, we measure the impact of the Clock-Gating technique on power as well as on design's performance. We have performed two separate trials, using 112 industrial designs from different technologies, the former trial enables Clock Gate insertion, and the latter does not insert Clock Gate cells in the design's circuitry. We intend to measure the impact of Clock Gating on power by measuring the Power variation and comparing metrics such Instance number Buffer & Inverter, Combinational blocks as well as QoR metrics such Runtime, wire-length, TNS, and Area. Results of this experiment showed that design circuits having Memories (SRAM, DFF, FIFO…) as dominant RTL modules, have the most impact on power when CG cells are inserted. Vice-versa power is less impacted by CG cells insertion for designs that contain microprocessors and Datapath blocks as dominant RTL instances.\",\"PeriodicalId\":212613,\"journal\":{\"name\":\"2021 International Conference on Microelectronics (ICM)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM52667.2021.9664896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM52667.2021.9664896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,功耗优化已成为超大规模集成电路设计中的一个重要因素,各种低功耗优化技术正在不断发展。时钟门控被认为是VLSI功率优化中广泛应用的技术之一。对时钟路径进行门控可以减少由于逻辑模块路径中不必要的活动而导致的电容切换浪费,从而节省功率,从而导致更多的开关功率浪费。时钟门控并不总是有益的,它在各种VLSI设计的实现中存在一些陷阱和谬误,并且它并不适用于各种VLSI逻辑电路。在本文中,我们测量了时钟门控技术对功率和设计性能的影响。我们已经进行了两次单独的试验,使用来自不同技术的112种工业设计,前一次试验允许时钟门插入,后一次试验不允许在设计电路中插入时钟门单元。我们打算测量时钟门控对功率的影响,通过测量功率变化和比较指标,如实例数缓冲器和逆变器,组合块以及QoR指标,如运行时间,导线长度,TNS和面积。实验结果表明,当插入CG细胞时,以存储器(SRAM, DFF, FIFO…)为主要RTL模块的设计电路对功率的影响最大。反之,对于包含微处理器和Datapath块作为主导RTL实例的设计,功率受CG单元插入的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clock Gating Efficiency and Impact on Power Optimization During Synthesis Flow
Nowadays, power optimization has become an important factor in VLSI design and various low power optimization techniques are being developed. Clock-Gating is considered one of the widely used techniques in VLSI power optimization. Gating the Clock path results in saving power by reducing wasted capacitances switching due to unnecessary activity in logic module paths, thus resulting in more wasted Switching power. Clock gating is not always beneficial, it presents some pitfalls and fallacies within its implementation in various VLSI designs, as well as it doesn't suit all kinds of VLSI logic circuits. In this paper, we measure the impact of the Clock-Gating technique on power as well as on design's performance. We have performed two separate trials, using 112 industrial designs from different technologies, the former trial enables Clock Gate insertion, and the latter does not insert Clock Gate cells in the design's circuitry. We intend to measure the impact of Clock Gating on power by measuring the Power variation and comparing metrics such Instance number Buffer & Inverter, Combinational blocks as well as QoR metrics such Runtime, wire-length, TNS, and Area. Results of this experiment showed that design circuits having Memories (SRAM, DFF, FIFO…) as dominant RTL modules, have the most impact on power when CG cells are inserted. Vice-versa power is less impacted by CG cells insertion for designs that contain microprocessors and Datapath blocks as dominant RTL instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信