{"title":"一种259.6μW非线性HRV-EEG混沌处理器,带有身体通道通信接口,用于心理健康监测","authors":"Taehwan Roh, Sunjoo Hong, Hyunwoo Cho, H. Yoo","doi":"10.1109/ISSCC.2012.6177020","DOIUrl":null,"url":null,"abstract":"In this paper, we present a wearable mental health measurement system incorporating the nonlinear analysis of physiological rhythm including HRV and EEG signals together for high accuracy. The proposed system is implemented in a 31g headband that measures scalp signals and performs nonlinear-chaotic analysis to measure the stress levels. Using a 1.2V 40mAhr coin-battery (11.7χ5.35mm21.7g), the proposed system is able to operate for more than 7 days.","PeriodicalId":255282,"journal":{"name":"2012 IEEE International Solid-State Circuits Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A 259.6μW nonlinear HRV-EEG chaos processor with body channel communication interface for mental health monitoring\",\"authors\":\"Taehwan Roh, Sunjoo Hong, Hyunwoo Cho, H. Yoo\",\"doi\":\"10.1109/ISSCC.2012.6177020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a wearable mental health measurement system incorporating the nonlinear analysis of physiological rhythm including HRV and EEG signals together for high accuracy. The proposed system is implemented in a 31g headband that measures scalp signals and performs nonlinear-chaotic analysis to measure the stress levels. Using a 1.2V 40mAhr coin-battery (11.7χ5.35mm21.7g), the proposed system is able to operate for more than 7 days.\",\"PeriodicalId\":255282,\"journal\":{\"name\":\"2012 IEEE International Solid-State Circuits Conference\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2012.6177020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2012.6177020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 259.6μW nonlinear HRV-EEG chaos processor with body channel communication interface for mental health monitoring
In this paper, we present a wearable mental health measurement system incorporating the nonlinear analysis of physiological rhythm including HRV and EEG signals together for high accuracy. The proposed system is implemented in a 31g headband that measures scalp signals and performs nonlinear-chaotic analysis to measure the stress levels. Using a 1.2V 40mAhr coin-battery (11.7χ5.35mm21.7g), the proposed system is able to operate for more than 7 days.